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ABSTRACT

Objectives: Most contemporary epidemiologic studies require complex
analytical methods to adjust for bias and confounding. New methods are
constantly being developed, and older more established methods are yet
appropriate. Careful application of statistical analysis techniques can
improve causal inference of comparative treatment effects from nonran-
domized studies using secondary databases. A Task Force was formed to
offer a review of the more recent developments in statistical control of
confounding.
Methods: The Task Force was commissioned and a chair was selected by
the ISPOR Board of Directors in October 2007. This Report, the third in
this issue of the journal, addressed methods to improve causal inference of
treatment effects for nonrandomized studies.
Results: The Task Force Report recommends general analytic techniques
and specific best practices where consensus is reached including: use of

stratification analysis before multivariable modeling, multivariable regres-
sion including model performance and diagnostic testing, propensity
scoring, instrumental variable, and structural modeling techniques includ-
ing marginal structural models, where appropriate for secondary data.
Sensitivity analyses and discussion of extent of residual confounding are
discussed.
Conclusions: Valid findings of causal therapeutic benefits can be pro-
duced from nonrandomized studies using an array of state-of-the-
art analytic techniques. Improving the quality and uniformity of these
studies will improve the value to patients, physicians, and policymakers
worldwide.
Keywords: causal inference, comparative effectiveness, nonrandomized
studies, research methods, secondary databases.

Background to the Task Force

In September 2007, the International Society for Pharmacoeco-
nomics and Outcomes Research (ISPOR) Health Science Policy
Council recommended that the issue of establishing a Task Force
to recommend Good Research Practices for Designing and Ana-
lyzing Retrospective Databases be considered by the ISPOR
Board of Directors. The Council’s recommendations concerning
this new Task Force were to keep an overarching view toward the
need to ensure internal validity and improve causal inference
from observational studies, review prior work from past and
ongoing ISPOR task forces and other initiatives to establish
baseline standards from which to set an agenda for work. The
ISPOR Board of Directors approved the creation of the Task
Force in October 2007. Task Force leadership and reviewer
groups were finalized by December 2007, and the first telecon-
ference took place in January 2008.

Task Force members were experienced in medicine, epidemi-
ology, biostatistics, public health, health economics, and phar-
macy sciences, and were drawn from industry, academia, and as
advisors to governments. The members came from the UK,
Germany, Austria, Canada, and the United States.

Beginning in January 2008, the Task Force conducted
monthly teleconferences to develop core assumptions and an
outline before preparing a draft report. A face-to-face meeting
took place in October 2008, to develop the draft, and three
forums took place at the ISPOR Meetings to develop consensus
for the final draft reports. The draft reports were posted on the
ISPOR website in May 2009 and the task forces’ reviewer group
and ISPOR general membership were invited to submit their
comments for a 2 week reviewer period. In total, 38 responses
were received. All comments received were posted to the ISPOR
website and presented for discussion at the Task Force forum
during the ISPOR 12th Annual International Meeting in May
2009. Comments and feedback from the forum and reviewer and
membership responses were considered and acknowledged in the
final reports. Once consensus was reached, the manuscript was
submitted to Value in Health.
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Introduction

We proceed from the assumption that proper statistical analysis
of study data is dependent upon the research question to be
answered, and the study design that led to the collection of data,
in this case secondarily, to be analyzed [1,2]. We also assume that
the data to be analyzed has been appropriately measured, vali-
dated, defined, and selected. Many authors have described good
research practices in these fundamental areas, including other
ISPOR task force groups, and we seek to build upon their work,
not reproduce it [3,4]. Recognizing that new methods are con-
stantly being developed, and older more established methods are
yet appropriate, we intend to offer a review of the more recent
developments in statistical control of confounding.

Stratification

Stratified analysis is a fundamental method in observational
research. It involves placing data into subcategories, called strata,
so that each subcategory can be observed separately. Its many
uses in observational studies include standardization, control of
confounding, subgroup analysis in the presence of effect-measure
modification, and to address selection bias of the type that occurs
in matched case control studies. When a cohort is categorized by
follow-up time, stratification can also prevent bias from compet-
ing risks and losses to follow-up.

Like any analytical method, stratification has its strengths
and limitations. Its strengths are that it is an intuitive and
hands-on method of analysis, results are readily presented and
explained, and it does not require restrictive assumptions. Its
disadvantages include a potential for sparsely populated strata,
which reduce precision, loss of information when continuous
variables are split into arbitrarily chosen categories, and a ten-
dency to become arduous when the number of strata is large.

Most contemporary observational studies use complex ana-
lytical methods such as multivariable regression analysis. Given
the ubiquity of those methods, it is tempting to undervalue the
role of stratified analysis, but to do so is a mistake because it has
important uses that are not well served by other methods.
Because stratified analysis can be applied “hands-on,” often in a
simple spreadsheet program, it allows investigators to get closer
to their data than they otherwise could by using more complex
methods such as multivariable regression. Furthermore, stratified
analysis in a cohort where observations are categorized by levels
of the most influential covariates should provide results that are
comparable to estimates from a rigorous multivariable model. If
results from a stratified analysis are markedly different from
estimates obtained from a regression model, then the discrepancy
should serve as a warning that the investigator has possibly made
a mistake. For this reason, it is important to do a stratified
analysis in studies even when more complex analytical methods
are finally used. It is advisable to conduct a stratified analysis
prior to undertaking a more complex analysis because of its
potential to provide important information on relevant covari-
ates and how they could be optimally included in a model.

Stratified analysis can proceed by categorizing data into
strata. In a spreadsheet, 10 to 20 strata should be manageable
before the analysis becomes cumbersome. If the analysis requires
more strata, then it may be helpful to perform the analysis in
stages by first examining levels of a few variables, and then in
subsets defined according to those first few variables, perform
analyses on more variables. A staged approach can be time-
consuming and does not lend itself easily to calculating summary
or pooled estimates, but it can be useful for studying effect-
measure modification.

Significant heterogeneity between strata suggests the presence
of effect-measure modification. When this happens, stratum-
specific estimates should be reported because effect-measure
modification is a characteristic of the effect under study rather
than a source of bias that needs to be eliminated. Pooled effect
estimates can be calculated in the absence of effect-measure
modification to obtain an overall estimate of an effect. A pooled
estimate that is substantially different from stratum-specific esti-
mates indicates the possible presence of confounding. Multiple
methods are available for estimating pooled effects. The main
difference between pooled estimators is how each assigns weights
to strata. A simple but typically unsatisfactory method is to
equally weight all strata regardless of the amount of information
they contain. Person-time weights or inverse variance weights are
better because they assign weights in proportion to the amount of
information contained in each stratum. Another common
method for estimating pooled effects is to use Mantel–Haenszel
weights. Mantel–Haenszel estimators are accurate, widely recog-
nized, and easy to calculate. For more information, a practical
and comprehensive discussion of stratified analysis was written
by Rothman and Greenland [5].

Regression

Numerous texts are available to teach regression methodology,
and we do not attempt to summarize them here, nor cite a
complete list [6–10]. Regression is a powerful analytical tech-
nique that can accomplish several goals at once. When more than
a few strata are formed for stratified analysis, or when more than
a few potential confounding factors need to be adjusted, multiple
regressions can be used to determine the unique association
between the treatment and the outcome, after simultaneously
adjusting for the effects of all the other independent factors
included in the regression equation. It is very common to see
reports of the parameter estimates, rate ratio (RR), or odds ratio
(OR), and their 95% confidence limits, for a given variable after
adjustment for a long list of covariates. It is becoming less
common to actually see the full regression model adjusted for all
the covariates, but failure to present the full model may lead to
concerns of a “black box” analysis that has other pitfalls [11,12].
Another very important use of regression is to use the regression
equation to predict study outcomes in other patients. This is the
primary use of multiple logistic regression when used for pro-
pensity scoring, which will be discussed later. Present the final
regression model, not only the adjusted treatment effects. If
journal or other publications limit the amount of information
that can be presented, the complete regression should be made
available to reviewers and readers in an appendix.

Variable Selection
One of the critical steps in estimating treatment effects in the
observational framework is to adequately assess all the potential
confounding variables that can influence treatment selection or
the outcome. In order to capture all of the potentially confound-
ing variables and any suspected effect modification or interac-
tions, a thorough literature review should be conducted to
identify measures that influence treatment selection and outcome
measurement, and a table should be created detailing the
expected associations. The analyst should identify those mea-
sures available in the data, or good proxies for them, and include
them in the regression model irrespective of statistical signifi-
cance at traditional significance levels. When using administra-
tive data sources with limited clinical information, there are often
instances when the analyst will not have access to meaningful
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measures for some known or suspected confounders. In these
instances when the model cannot include known or suspected
confounders, the regression estimates of treatment effect will be
biased leading to omitted variable or residual confounding bias.
Because omitted variables can lead to biased estimates of treat-
ment effect, it is important to identify all the known potential
confounders as a starting point and to make every attempt to
identify measures in the data and to incorporate them into the
model. When known potential confounders cannot be included
in the model, the analyst should acknowledge their missingness
as a limitation and describe the anticipated directionality of the
bias. For regressions where the magnitude of effect is weak or
modest, omitted variable bias may lead to meaningful changes in
conclusions drawn from the data. Even when all known con-
founders are included in the regression equation, unobserved or
unobservable confounders may still exist resulting in omitted
variable bias. To address the potential impact of omitted variable
bias, there are techniques that can describe the characteristics of
a confounder that would drive the results from significance to the
null.

Model Selection
The form of the dependent variable generally drives the choice of
a regression model. Continuously distributed variables are gen-
erally analyzed with ordinary least squares (OLS) regression,
while dichotomous or binary outcomes (yes/no; either/or; dead/
alive) can be modeled with logistic regression. In practice,
common statistical software programs analyze both types of
outcomes using maximum likelihood estimation and assuming
the appropriate error distribution (normal, logistic, etc.). Logistic
regression has become almost ubiquitous in the medical literature
in the last 20 years, coinciding with advances in computational
capacity and familiarity with the method. Linear and logistic
regressions fall under a broader category of models known as
generalized linear models (GLM). GLMs also include models
with functional forms other than linear or log-linear to describe
the relationship between the independent and dependent vari-
ables. Some commonly used link functions and error distribu-
tions are shown in Table 1.

Another valuable use of GLM models is their ability to incor-
porate different specifications of covariance structures when the
assumption of the independence between observations is vio-
lated. Longitudinal analyses using data sets in which multiple
measurements are taken on the same subject over time are
common in comparative effectiveness studies. In such analyses,
the observations are not independent, and any correlation must
be accounted for to obtain valid and precise estimates of effects
[15]. An analogous situation produces the same type of correla-
tion when study subjects are sampled repeatedly from a single
location, for example, within hospitals. Such a hospital has
repeated measures taken from it, also called nested within or
hierarchical, and these observations are likely correlated. There-
fore, some studies that are conducted from a few or several sites
may need to adjust for nested sampling. Situations in which

multiple observations are obtained from the same subjects can be
estimated using generalized estimating equations (GEE) within
the framework of GLM. In a GEE, the researcher chooses a
functional form and link function as with any GLM, but then
also chooses a covariance structure that adequately describes the
known or suspected correlations between repeated observations.
Commonly used types of covariance structures include exchange-
able, autoregressive, and unstructured. When in doubt as to the
true correlation structure, then an exchangeable matrix should
be used.

Logistic regression analysis assumes that there is no loss to
follow-up or competing risks in the study population. These are
strong assumptions that are not necessary in another type of
model known as Cox proportional hazards regression. In this
model, the dependent variable becomes the time to the event
rather than the probability of the event occurring over a specified
period as in a logistic regression model. This difference is in terms
of how long it takes until an outcome occurs, that is, modeling
“when,” not just “if.” Cox regression models also allow for a
very important advance, with the inclusion of time-varying or
time-dependent covariates. These are independent variables,
which are allowed to change their value over time (just as the
dependent variable is changing its value over time). Because drug
exposures can change over time as patients change to different
drugs or doses, Cox regression is a powerful tool, which in some
circumstances will more realistically model the exposure–
outcome relationship in treatment effect studies.

Testing Model Assumptions
There are many statistical assumptions that underlie these regres-
sion techniques. For the linear and logistic models, the assump-
tions of normality and linear association are possibly the most
important. Fortunately, these models are very robust to the
assumption of normality, that is, the outcome variable has to be
very non-normal (such as costs) to severely threaten parameter
estimates. A more common problem is the use of continuous
measures modeled as continuous variables without checking the
assumption of linear association. For example, age is usually
thought of as a continuous variable, ranging from maybe 18 to
90 or so in many studies of adults with medical conditions. Age
in years is actually a categorical variable, with 72 different levels,
in this case. It is essential to check the assumption of a linear
relationship between continuous independent variables and
study outcomes; if the independent variable does not have a
linear relation, then nonlinear forms, such as categories should
be used in modeling. Thus, it is essential to check and see if the
association of age with the study outcome increases/decreases in
a relatively constant amount as age increases/decreases, or the
study results for age, and the control or adjustment for con-
founding by age, may not be valid. For example, if relatively few
subjects are very old and also have a certain unfavorable
response to a drug, and most of the other patients are younger
and generally do not have unfavorable responses, a regression
model may erroneously show that increased age is a risk factor

Table 1 Commonly used link functions and error distributions for outcomes with different types of data

Examples of outcomes Data type Link function Error distribution

Trends in drug utilization or costs Continuous Identity Gamma*
Predictors of treatment choice, death Binary Logistic Binomial
Myocardial infarction, stroke, hospitalizations Count Log Poisson†

*Assuming Gamma-distributed errors does not require log transformation of utilization and thus increases interpretability of results [13,14].
†Depending on the skewness of data, we may adjust for over dispersion using the scale parameter.
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because it is assuming a linear relation with age that is not
actually there. In this case, the variable should be modeled as a
categorical variable. Another serious assumption that should be
tested is the proportional hazards assumption for Cox regression.
The Cox model is based on the assumption that the hazard rate
for a given treatment group can change over time, but that the
ratio of hazard rates for two groups is proportional. In other
words, patients in two treatment groups may have different
hazards over time, but their relative risks should differ by a more
or less constant amount. It is not a difficult assumption to test,
but if violated, study results using this technique become ques-
tionable. Thus, the proportional hazards assumption for treat-
ment exposure should always be tested before conducting Cox
proportional hazards regression, and if this assumption is vio-
lated, alternative techniques such as time-varying measures of
exposure in extended Cox models should be implemented.

Performance Measurement
Analyses using regression models should report model perfor-
mance. For example, OLS regression models should report the
coefficient of determination (R2). This is so that the reader can
determine if this regression equation has made any realistic
explanation of the total variance in the data. In a large database
study, the R2 could be very small, but parameter estimates may be
unbiased. Although valid, it may be questionable as to the value
of intervening on such variables. In logistic regression, the
c-statistic or area under the receiver operating characteristic
curve (ROC) is a standard output in many statistical software
packages to assess the ability of model to distinguish subjects
who have the event from those who do not. Qualitative assess-
ments of the area under the ROC curve have been given by
Hosmer and Lemeshow 1999 [9]. Performance measures (R2,
area under ROC curve) should be reported and a qualitative
assessment of these measures should be discussed regarding the
explanation of variance or discrimination of the model in pre-
dicting outcome. If the emphasis is on prediction, one might care
more about model performance than if the emphasis is on mul-
tivariable control of several confounding factors.

Diagnostics
All statistical software packages also provide an array of mea-
sures to determine if the regression model has been properly
produced. Plots of the observed values to predicted values, or the
difference between observed and predicted (residual values) can
be easily produced to examine for outlier observations that may
be exerting strong influence on parameter estimates. With pow-
erful computers in today’s world, on the desktop, or in one’s lap
at a sidewalk cafe, it is very easy to rely on the computer to crank
out all kinds of fascinating parameter estimates, RRs, ORs, con-
fidence intervals and P-values that may be questionable if not
actual garbage. It is very important for the analyst to check the
results of regression modeling by at least checking plots of residu-
als for unexpected patterns. Regression diagnostics including
goodness of fit should be conducted and reported.

Missing Data

One of the many challenges that face researchers in the analysis
of observational data is that of missing data. In its most extreme
form, observations may be completely missing for an important
analytic variable (e.g., Hamilton depression scores in a medical
claims analysis). However, the issue of missing data is more
commonly that of missing a value for one or more variables
across different observations. In multivariate analyses such as

regression models, most software packages simply drop observa-
tions if they are missing any values for a variable included in the
model. As a result, highly scattered missing observations across a
number of variables can lead to a substantial loss in sample size
even though the degree of “missingness” might be small for any
particular variable.

The appropriate approach for addressing missing data
depends upon its form. The simplest approach is to substitute the
mean value for each missing observation using the observed
values for the variable. A slightly more sophisticated version of
this approach is to substitute the predicted value from a regres-
sion model. However, in both instances, these approaches sub-
stitute the same value for all patients (or all patients with similar
characteristics). As a result, these methods reduce the variability
in the data. (This may not be a particularly serious problem if the
pattern of missingness seems to be random and does not impact
large numbers of observations for a given variable.) More sophis-
ticated methods are available that preserve variation in the data.
These range from hot deck imputation methods to multiple
imputation [16,17]. The extent of missing data and the approach
to handle it should always be reported.

Recommendations

• Conduct a stratified analysis prior to undertaking a more
complex analysis because of its potential to provide impor-
tant information on relevant covariates and how they could
be optimally included in a model.

• Present the final regression model, not only the adjusted
treatment effects. If journal or other publications limit the
amount of information that can be presented, the complete
regression should be made available to reviewers and
readers in an appendix.

• Conduct a thorough literature review to identify all
potential confounding factors that influence treatment
selection and outcome. Create a table detailing the expected
associations.

• When known potential confounders cannot be included in
the model, the analyst should acknowledge their missing-
ness as a limitation and describe the anticipated directiona-
lity of the bias.

• When in doubt as to the true correlation structure, then an
exchangeable matrix should be used.

• Check the assumption of a linear relationship between con-
tinuous independent variables and study outcomes; if the
independent variable does not have a linear relation, then
nonlinear forms, such as categories should be used in
modeling.

• The proportional hazards assumption for treatment expo-
sure should always be tested before conducting Cox pro-
portional hazards regression; if this assumption is violated,
alternative techniques such as time-varying measures of
exposure in extended Cox models should be implemented.

• Performance measures (R2, area under ROC curve) should
be reported and a qualitative assessment of these measures
should be discussed regarding the explanation of variance
or descrimination of the model in predicting outcome.

• Regression diagnostics including goodness of fit should be
conducted and reported.

• The extent of missing data and the approach to handle it
should always be reported.

Propensity Score Analysis

The propensity score is an increasingly popular technique to
address issues of selection bias, confounding by indication or
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endogenity commonly encountered in observational studies esti-
mating treatment effects. In 2007, a Pubmed search identified
189 human subjects “propensity score” articles compared to just
2 retrieved in 1997. Propensity scoring techniques are now being
used in observational studies to address a wide range of eco-
nomic, clinical, epidemiologic, and health services research
topics. The appeal of the propensity scoring techniques lies in an
intuitive tractable approach to balance potential confounding
variables across treatment and comparison groups. When pro-
pensity scores are utilized with a matching technique, the stan-
dard “Table 1” that compares baseline characteristics of treated
and untreated subjects often resembles those obtained from ran-
domized clinical trials where measured covariates are nearly
equally balanced across comparison groups [18,19]. This trans-
parent balancing of confounders facilitates confidence in inter-
preting the results compared to other statistical modeling
approaches; however, unlike randomization, balance between
unmeasured or unmeasurable factors cannot be assumed.

The propensity score is defined as the conditional probability
of being treated given an individual’s covariates [20,21]. The
more formal definition offered by Rosenbaum and Rubin for the
propensity score for subject i(i = 1, . . . , N) is the conditional
probability of assignment to a treatment (Zi = 1) versus compari-
son (Zi = 0) given observed covariates, xi:

E pr Z Xx xi i i i( ) = = =( )1

The underlying approach to propensity scoring uses observed
covariates X to derive a “balancing score” b(X) such that the
conditional distribution of X given b(X) is the same for treated
(Z = 1) and control (Z = 0) [20,21]. When propensity scores are
used in matching, stratification, or regression, treatment effects
are unbiased when treatment assignment is strongly ignorable
[21]. Treatment assignment is strongly ignorable if treatment
groups, Z, and the outcome (dependent) variable are condition-
ally independent given the covariates, X. This independence
assumption will not hold in situations where there are variables
or at least good proxy measures not included as propensity score
covariates that are correlated with outcome events and treatment
selection. These situations are fundamentally the same issue asso-
ciated with omitted variable bias encountered in more classical
regression-based methods. The most common approach to esti-
mate propensity scores are logistic regression models; however,
other approaches such as probit models, discriminant analysis,
classification and regression trees, or neural networks are pos-
sible [22,23]. A tutorial by D’Agostino provides a good descrip-
tion of how to calculate propensity scores including sample SAS
code [21].

Once a propensity score has been developed, there are three
main applications of using the propensity score: matching, strati-
fication, and regression. Matching on the propensity score takes
several approaches, but all are centered on finding the nearest
match of a treated (exposed) individual to a comparison sub-
ject(s) based on the scalar propensity score [24]. Onur Baser
described and empirically compared seven matching techniques
(stratified matching, nearest neighbor, 2 to 1 nearest neighbor,
radius matching, kernel matching, Mahalanobis metric matching
with and without calipers) and found Mahalanobis metric
matching with calipers to produce more balanced groups across
covariates. This was the only method to have insignificant dif-
ferences in the propensity score density estimates, supporting
previous work demonstrating the better balance obtained with
this matching technique [23,25]. By using calipers in the match-
ing process, only treated control pairs that are comparable are
retained. Persons in which treatment is contraindicated or rarely
indicated from the control sample (low propensity) or in which

treatment is always indicated in the treatment sample (high pro-
pensity) are excluded, thus ensuring the desired feature of greater
overlap of covariates. This restriction of ensuring overlap on
important covariates is a relative strength of propensity score
matched analysis; however, if large numbers of unmatched sub-
jects are excluded, one should note the impact on generalizability
and in the extreme case if nearly all subjects go unmatched, the
comparison should probably not be made in the first place. A
lack of overlap may go undetected using traditional regression
approaches where the results may be overly influenced by these
outliers. Ironically, one of the criticisms sometimes leveled at
propensity score analysis is that it is not always possible to find
matches for individuals in the respective treatment groups—this
suggests that these individuals should not be compared in the first
place!

In addition to matching techniques, propensity scores can be
used in stratified analyses and regression techniques [21]. Pro-
pensity scores can be used to group treated and untreated sub-
jects into quintiles, deciles, or some other stratification level
based on the propensity score, and the effects of treatment
can be directly compared within each stratum. Regression
approaches commonly include the propensity score as a cova-
riate along with a reduced set of more critical variables in a
regression model with an indicator variable to ascertain the
impact of treatment. It should be noted that, because the pro-
pensity score is a predicted variable, a correction should be
made to the standard error of any propensity score variable
included in a regression. This is not standard practice and, as a
result, the statistical tests of significance for such variables are
generally incorrect.

One of the main potential issues of propensity scoring tech-
niques lies in the appropriate specification or selection of cova-
riates that influence the outcome measure or selection of the
treatment. The basis of selecting variables should be based on a
careful consideration of all factors that are related to treatment
selection and or outcome measures [26]. There is some empirical
work to help guide the analyst in specifying the propensity
models, but additional research in this area is warranted before
variable specification recommendations can be made conclu-
sively. One temptation may be to exclude variables that are only
related to treatment assignment but have no clear prognostic
value for outcome measures. Including variables that are only
weakly related to treatment selection should be considered
because they may potentially reduce bias more than they increase
variance [23,27]. Variables related to outcome should be
included in the propensity score despite their strength of associa-
tion on treatment (exposure) selection. Because the coefficients of
the covariates of the propensity score equation are not of direct
importance to estimating treatment effects per se, parsimony is
less important and all factors that are theoretically related to
outcome or treatment selection should be included despite sta-
tistical significance at traditional levels of significance. This is
why many propensity score algorithms do not use variable reduc-
tion techniques, such as stepwise regression, or use very liberal
variable inclusion criteria such as P < 0.50.

One of the clear distinctions between observational data
analyses using propensity scoring and large randomized experi-
ments is the inability to balance unmeasured or unmeasurable
factors that may violate the treatment independence assumption
critical to obtain unbiased treatment estimates. To gain practical
insights into the impact of omitting important variables, an
empirical exercise compared two propensity models of lipid-
lowering treatment and acute myocardial infarction (AMI). One
model included 38 variables and 4 quadratic terms, including
laboratory results (low density lipoprotein (LDL), high density
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lipoprotein (HDL), triglycerides) commonly not available in
claims data, and another full model which included 14 additional
variables that are not routine measures incorporated in many
analyses such as the number of laboratory tests performed [28].
The reduced propensity model had a very high level of discrimi-
nation (c-statistic = 0.86) and could have been assumed to be a
complete list of factors; however, it failed to show any benefit of
statin initiation while the full model showed a lower risk of AMI
with statin therapy, a finding comparable to clinical trials. This
case study demonstrates the importance of carefully selecting all
possible variables that may confound the relationship and high-
lights the caution one should undertake when using data sets that
have limited or missing information on many potentially influ-
ential factors, such as commonly encountered with administra-
tive data. Stürmer et al. have proposed a method of using
validation data that contains richer data on factors unmeasured
in larger data sets to calibrate propensity score estimates [29].
This technique offers promise to address the omitted variable
issue with administrative data but would be difficult to imple-
ment on a wide scale as more rich validation samples are not
routinely available.

Because propensity scoring largely utilizes the same underly-
ing covariate control as standard regression techniques, the ben-
efits of building a propensity scoring scalar instead of directly
using the same covariates in a standard regression technique may
not be obvious. Empirical comparisons between regression and
propensity score estimates have been reviewed and have shown
that estimates of treatment effect do not differ greatly between
propensity score methods and regression techniques. Propensity
scoring tended to yield slightly more conservative estimates of
exposure effect than regression [30]. Despite the lack of clear
empirical differences between these approaches, there are several
theoretical and practical advantages of propensity scoring [22].
Matching and stratification with propensity scores identifies situ-
ations in which there exist little overlap on covariates, and these
situations are elucidated clearly with propensity scoring; in
matched analyses these subjects are excluded from analysis
whereas these differences in exposure would be obscured in
regression analyses. Stratified analyses can also elucidate propen-
sity score treatment interactions. Because parsimony is not a

consideration in the propensity scoring equation,many more
covariates, more functional forms of the covariates, and interac-
tions can be included than would be routinely considered in
regression analyses. This issue is emphasized when there are
relatively few outcome events where there are greater restrictions
imposed on the number of covariates in regression techniques
when using rules of thumb such as 8–10 events per covariate.
One of the drawbacks of stratified or matched propensity scoring
approaches relative to regression approaches is that the influence
of other covariates (demographics, comorbidities) on the
outcome measure is obscured unless additional analyses are
undertaken. Overall, there is no clear superiority of regression or
propensity score approaches, and ideally, both approaches could
be undertaken.

When operating in the observational framework, omitting
important variables because they are unavailable or are unmea-
surable is often the primary threat to obtaining unbiased estimates
of treatment effect. Propensity scoring techniques offer the analyst
an alternative to more traditional regression adjustment and when
propensity-based matching or stratification techniques are used,
the analyst can better assess the “overlap” or comparability of the
treated and untreated. However, the propensity score analyses in
of themselves cannot address the issues of bias when there are
important variables not included in the propensity score estima-
tion. Instrumental variable (IV) techniques have the potential to
estimate unbiased estimates, at least local area treatment effects in
the presence of omitted variables if one or more instruments can be
identified and measured. An empirical comparison between tradi-
tional regression adjustment, propensity scoring, and IV analysis
in the observational setting was conducted by Stukel et al. that
estimated the effects of invasive cardiac management on AMI
survival [31]. The study found very minor differences between
several propensity score techniques and regression adjustment
with rich clinical and administrative covariates. However, there
were notable differences in the estimates of treatment effect
obtained with IVs (Fig. 1). The IV estimates agreed much more
closely with estimates obtained from randomized controlled trials.
This empirical example highlights one of the key issues with
propensity scoring when there are strong influences directing
treatment that are not observed in the data.
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Figure 1 Effects of invasive cardiac management
on AMI survival [31].

ISPOR RDB Task Force Report—Part III 1067



Marginal Structural Models

Standard textbook definitions of confounding and methods to
control for confounding refer to independent risk factors for the
outcome, that are associated with the risk factor of interest, but
that are not an intermediate step in the pathway from the risk
factor to disease. The more complicated (but probably not less
common) case of time-varying confounding refers to variables
that simultaneously act as confounders and intermediate steps,
that is, confounders and risk factors of interest mutually affect
each other.

Standard methods (stratification, regression modeling) are
often adequate to adjust for confounding except for the impor-
tant situation of time-varying confounding. In particular, con-
founding by indication is often time varying, and therefore, an
additional concern common to pharmacoepidemiologic studies.
In the presence of time-varying confounding, standard statistical
methods may be biased [32,33], and alternative methods
such as marginal structural models or G-estimation should be
examined.

Marginal structural models using inverse probability of
treatment weighting (IPTW) have been recently developed and
shown to consistently estimate causal effects of a time-
dependent exposure in the presence of time-dependent con-
founders that are themselves affected by previous treatment
[34,35]. The causal relationship of treatment, outcome, and
confounder can be represented by directed acyclic graphs
(DAGs) [36–38].

In the Figure 2a above, A represents treatment (or exposure),
Y is the outcome, and L is a (vector of) confounding factor(s).

In the case of pharmacoepidemiologic studies, drug treatment
effects are often time dependent, and affected by time-dependent
confounders that are themselves affected by the treatment. An
example is the effect of aspirin use on the risk of myocardial
infarction (MI) and cardiac death [39]. Prior MI is a confounder
of the effect of aspirin use on risk of cardiac death because prior
MI is associated with (subsequent) aspirin use, and is associated
with (subsequent) cardiac death. However, (prior) aspirin use is
also associated with (protective against) the prior MI. Therefore,
prior MI is both a predictor of subsequent aspirin use, and
predicted by past aspirin use, and hence is a time-dependent

confounder affected by previous treatment. This is depicted in the
DAG graph in Figure 2b above. Aspirin use is treatment A, and
prior MI is confounder L.

In the presence of time-dependent covariables that are them-
selves affected by previous treatment, L(t), the estimates of the
association of treatment with outcome is unbiased, but it is a
biased estimate of the causal effect of a drug of interest on
outcome. This bias can be reduced or eliminated by weighting the
contribution of each patient i to the risk set at time t by the use
of stabilized weights (Hernan et al. 2000 [35]). The stabilized
weights, swi(t) =

pr A k a k A k a k V v
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These stabilized weights are used to obtain an IPTW partial
likelihood estimate. Here, A * (k – 1) is defined to be 0. The int(t)
is the largest integer less than or equal to t, and k is an integer-
valued variable denoting days since start of follow-up. Because by
definition each patient’s treatment changes at most once from
month to month, each factor in the denominator of swi(t) is the
probability that the patient received his own observed treatment at
time t = k, given past treatment and risk-factor history L*, where
the baseline covariates V are now included in L*. The factors in
the numerator are interpreted the same, but without adjusting for
any past time-dependent risk factors (L*).

Under the assumption that all relevant time-dependent con-
founders are measured and included in L*(t), then weighting by
swi(t) creates a risk set at time t, where 1) L*(t) no longer predicts
initiation of the drug treatment at time t, that is, L*(t) is not a
confounder), and 2) the association between the drug and the
event can be appropriately interpreted as a causal effect (asso-
ciation equals causation).

Standard Cox proportional hazards software does not allow
subject-specific weights if they are time-dependent weights. The
approach to work around this software limitation is to fit a
weighted pooled logistic regression, treating each person-month
as an observation [35,40]. Using the weights, swi(t), the model is:
logit pr[D(t) = 1|D(t - 1) = 0, A * (t - 1), V] = b0(t) + b1A(t - 1)
+ b2 V. Here, D(t) = 0 if a patient was alive in month t and 1 if
the patient died in month t. In an unweighted case, this model is

Causal graph of treatment A, 

confounders L, and outcome Y.  Time-

independent or point-estimate. 

Standard statistical approaches apply. 

a

b

 

Causal graph of time-dependent 

treatment A, time-dependent 

confounder L, and outcome Y.  

Standard approaches are biased. 

Figure 2 Simplified causal diagram for time-
independent and time-dependent confounding.
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equivalent to fitting an unweighted time-dependent Cox model
because the hazard in a given single month is small [40]. The use
of weights induces a correlation between subjects, which requires
the use of generalized estimating equations [15]. These can be
estimated using standard software in SAS by the use of Proc
GENMOD, with a “repeated” option to model the correlation
between observations. Results are obtained in terms of the usual
log-odds of the event. The final practical problem to solve is
actual estimation of the weights. This is accomplished by essen-
tially estimating the probability of treatment at time t from the
past covariable history, using logistic regression to estimate the
treatment probabilities in the numerator (without time-
dependent confounders) and in the denominator (with time-
dependent confounders) [41]. The method is related to
propensity scoring, where the probability of treatment is pi, given
covariables [20,42,43]. The IPTW-stabilized weight, swi(t), is the
inverse of the propensity score for treated subjects, and the
inverse of 1 - pi, for untreated subjects [39].

IVs Analysis

Sources of Bias in Treatment Effects Estimates
There are a variety of sources of bias that can arise in any
observational study. For example, bias can be generated by
omitted variables, measurement error, incorrect functional form,
joint causation (e.g., drug use patterns lead to hospitalization risk
and vice versa), sample selection bias, and various combinations
of these problems. One or more of these problems nearly always
exist in any study involving observational data. It is useful to
understand that, regardless of the source, bias is always the result
of a correlation between a particular variable and the disturbance
or error term of the equation. Economists refer to this problem as
endogeneity, and it is closely related to the concept of residual
confounding.

Unfortunately, the researcher never knows how big the endo-
geneity problem is in any particular study because the distur-
bance term is unobserved and, as a consequence, so is the extent
of the correlation between the disturbance term and the explana-
tory variable. Given its importance, it is not surprising that the
topic of endogeneity has long been an important topic in the
econometrics literature. The method of IV is the primary econo-
metric approach for addressing the problem of endogeneity. The
IV approach relies on finding at least one variable that is corre-
lated with the endogenous variable but uncorrelated with the
outcome. IV approaches for addressing the problem of endoge-
neity date to the 1920s—although the identity of the inventor
remains in doubt and will probably never be established for
certain [44]. With more than nine decades to accumulate, the
theoretical and applied literature on IVs estimation is vast. IVs
and endogeneity are described in all of the major econometrics
texts [45,46].

The IVs Approach
In outcomes research applications, endogeneity often raises its
head in the form of sample selection bias. This is the case of
nonrandom selection into treatment being due to unmeasured
variables that are also correlated with the error term of the
outcome equation. Sample selection bias methods developed to
address this problem [47] are closely related to IVs. For the
purposes of simplifying the discussion, we will consider them to
be synonymous.

The first step in the estimation of a sample selection model
mirrors that of the propensity score approach [48,49]. A model
of treatment selection is estimated (generally using a probit

model, rather than logit). Once estimated, this model can be used
to predict the probability of selecting treatment A as a function of
observable variables, and these predicted probabilities can be
compared to the patient’s actual status to calculate a set of
empirical residuals. In the second step, the empirical residuals (or,
more specifically, a function of these residuals known as the
inverse mills ratio) are included as an additional variable. If no
endogeneity bias is present, the parameter estimate on the inverse
mills ratio will be statistically insignificant. However, if, for
example, there are important unmeasured variables that are cor-
related with both treatment selection and outcomes, the included
residuals will not be randomly distributed, and the variable will
be either positively or negatively correlated with the outcome
variable. Thus, sample selection bias models provide a test of the
presence of endogeneity due to nonrandom selection into treat-
ment due to unobserved variables that are correlated with the
error term of the outcome equation. Even better, if such endoge-
neity is present, it is now confined to the IV—like magic the
problem is solved!

Sounds Good but Is IV Really the Holy Grail?
Despite the appeal of sample selection or IV methods for address-
ing the many variants of endogeneity that commonly arise in the
analysis of observational data, researchers have raised concerns
over the performance of IV and parametric sample selection bias
models—noting, in particular, the practical problems often
encountered in identifying good instruments. It is remarkably
difficult to come up with strong instruments (i.e., variables that
are highly correlated with the endogenous variable) that are
uncorrelated with the disturbance term. As a result, instruments
tend to be either weakly correlated with the variable for which
they are intended to serve as an instrument, correlated with the
disturbance term, or both. As a consequence, researchers tend to
gravitate toward the use of weak instruments to reduce the
chance of using an instrument that is itself endogenous. Unfor-
tunately, several studies have shown that weak instruments may
lead not only to larger standard errors in treatment estimates but
may, in fact, lead to estimates that have larger bias than OLS
[50–53].

Staiger and Stock [51] note that empirical evidence on the
strength of instruments is sparse. In their review of 18 articles
published in the American Economic Review between 1988 and
1992 using two-stage least squares, none reported first stage
F-statistics or partial R2s measuring the strength of identifica-
tion of the instruments. In several applications of IV to out-
comes research problems, however, researchers have reported
on the strength of their instruments [48,49,54–56]. This is
good practice and should always be done to allow the reader to
assess the potential strengths and weaknesses of the evidence
presented.

Most recently, Crown et al. [Crown W, Henk H, Van Ness D,
unpubl. ms.] have conducted simulation studies that show that
even in the presence of significant endogeneity problems and
when the researcher has a strong instrument, OLS analysis often
leads to less estimation error than IVs. This is because even low
correlations between the instrument and the error term introduce
more bias than it takes away. Given the tendency to identify weak
instruments in the first place, it seems unlikely that IV will
actually outperform OLS in most applied situations.

This suggests that, despite the appeal of IV methods,
researchers would be well advised to focus their efforts on
reducing the sources of bias (omitted variables, measurement
error, etc.), rather than wishing for a “magic bullet” from an IV.
Among others, these methods include propensity score matching
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methods, structural equation approaches, nonlinear modeling,
and many of the other methods described elsewhere in this
document. That said, researchers should always test for endo-
geneity using standard specification tests such as one of the
many variants of the Hausman test [45,46]. In instances where
it is possible to identify strong, uncontaminated instruments, IV
methods will yield treatment estimates that are unbiased even
when endogeniety is present. For excellent introductions and
summaries of the IV literature, the reader may wish to consult
Murray [56], Brookhart et al. [Brookhart MA, Rassen JA,
Schneeweiss S, unpubl. ms.], and Basu et al. [57].

Structural Equation Modeling

In all the statistical methods discussed thus far, dummy variables
are generally used to evaluate treatment effects. Although multi-
variate models attempt to control for other observable (and in
the case of IVs, unobservable) variables, they ultimately measure
an expected mean difference in the dependent variable between
treatment groups. Structural models enable much more detail
about the treatment effects to be elicited.

To illustrate this, consider that pharmaceutical treatment for
an illness may generally be characterized by three behavioral
processes and associated outcomes: 1) the choice of the drug; 2)
the subsequent realization of the patient’s medication adherence
behavior or drug use patterns; and 3) outcomes (e.g., mortality,
survival time, relapse, tumor progression). The conceptual
framework that links medical outcomes to drug choice can be
represented in the form of a path analysis diagram as follows
(Fig. 3).

As seen in the path diagram, we envisage choice of pharma-
ceutical treatment as having an effect or impact on the patient’s
compliance behavior or drug use patterns. The arrow that goes
from the first to the second box in the path diagram captures this
effect. In turn, we expect that patient’s medication adherence will
impact outcomes. The arrow between the second and third boxes
in the path diagram captures this relationship.

The relationships sketched in Figure 3 may be summarized in
a general way as follows:

Drug choice (D) D = f0(X, T, Z, Ho)
Medication Adherence (A) A = f1(D, X, T, Z, Ho)
Outcomes (O) O = f2(D, A, X, T, Ho)

Note that the major concepts of interest to us (drug choice,
medication adherence, and outcomes) appear on the left, and the
relationships among these concepts and their predictors are sum-
marized on the right.

With this notation, f0–f2 refers to the relationships among
drug choice, medication adherence, outcomes, and their predic-
tors. Some of these relationships may be linear and others may
be nonlinear, as described below. X refers to a vector of
explanatory variables that include patient characteristics such as
demographic variables (e.g., gender, age, region dummies, diag-
nosis dummies). T refers to the vector of treatment patients

received in the prior period (e.g., number of psychotherapy
visits in the prior period) and baseline health conditions. Z
refers to a vector of variables measuring provider characteris-
tics. Ho refers to baseline health characteristics of the person. In
this example the structure is assumed to be recursive in nature
(i.e., it is sequential). Furthermore, while a recursive relation-
ship is plausible among the major concept areas described in
Figure 3, it is also likely that some of these are determined
jointly rather than sequentially. This, along with the potential
that some of the equations may be nonlinear, presents a variety
of interesting estimation challenges in the statistical modeling of
these relationships.

In particular, the drug selection or choice of pharmacotherapy
occurs first in the sequence of events. After the drug selection
decision, patients generate medication adherence patterns that
in turn influence the observed outcomes (i.e., probability of
relapse). It is also possible, however, that outcomes can feed back
on drug use patterns. For example, a patient hospitalized for
mental illness is likely to experience a medication change as a
result. Moreover, both drug use patterns and outcomes may be
influenced by unobserved factors. As discussed earlier, such pat-
terns of time-varying and omitted variables can lead to biased
parameter estimates. Finally, drug use patterns and observed
outcomes may be correlated with unobserved variables associ-
ated with drug choice.

To illustrate the issues involved in modeling outcomes asso-
ciated with alternative pharmaceutical treatments, consider the
outcomes associated with a decision to treat depression-related
illness with an selective serotonin reuptake inhibitor (SSRI) anti-
depressant versus an serotonin/norepinephrine (SNRI). Drug use
patterns are considered as an intermediate outcome that may
have a significant effect on costs of treatment. In this analysis,
antidepressant use patterns will be defined using a dichotomous
variable that identifies antidepressant use as stable (4 or more
30-day prescriptions for the initial antidepressant within the first
6 months) or some other pattern of use.

These two relationships may be expressed in the following
equations, which are analogous to f0 and f1 above:

D X B= +1 1 1ε (1)

U X B D= + +2 2 2π ε (2)

where D is an indicator of initial SSRI versus SNRI antidepres-
sant selection; U is an indicator of the subsequent antidepressant
use pattern that is realized; X1 and X2, are sets of explanatory
variables (not mutually exclusive); B1, B2, and p are parameters to
be estimated.

Equation (1) models the selection of the initial antidepressant
as a function of explanatory variables that include patient demo-
graphics, baseline health conditions, and provider characteristics.
Similar explanatory variables appear in the use patterns equa-
tion, Equation (2), which also includes the indicator for the class
of drug initially prescribed for the patient.

Suppose the research objective was to estimate rates of
relapse for patients using SSRIs versus patients using SNRIs. The
outcome models would have the general form:

Y X B Ut t t t t t= + + +3 3θ λ εΓ (3a)

Y B Us s s s s s= + + +X3 3θ λ εΓ (3b)

where, Yt and Ys are outcome variables (i.e., probability of
relapse) for SNRI and SSRI patients respectively; X3 are sets of
explanatory variables; B3 and q are parameters to be estimated; Gt

Choice of Drugs 

Patient’s 

medication 

adherence 

Outcomes 

Figure 3 Simplified conceptual framework for path diagram of drug choice to
patient outcome.
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and Gs are inverse mills ratios, lt and ls are the associated
parameter estimates; and ε3

t and ε3
s are residuals.

Equations (3a) and (3b) specify observed outcomes as a func-
tion of patient and provider characteristics and according to the
use pattern achieved by the patient with the study antidepres-
sants. Also included in this specification of Equations (3a) and
(3b) is an inverse mills ratio, l, to test for the possibility of
unobserved variables that may be correlated with both initial
drug selection and time to relapse [47–49,58]. This is the IVs
(sample selection bias) approach described in the previous
section.

The outcome models are estimated using a variety of statis-
tical techniques, depending upon the nature of the dependent
variable. For example, time to relapse could be estimated using
Cox Proportional Hazard models. Separate outcome equations
for patients treated with SNRIs and SSRIs allow for structural
differences in the relationships between observed outcomes and
the observable characteristics of patients receiving each type of
drug (i.e., different coefficient signs and/or significance of vari-
ables in the outcome models for each drug). Including the sample
selection terms accounts for the potential influence of the cova-
riance between the residuals of the antidepressant choice (1) and
the outcome Equations (3a) and (3b). However, correlation
between the residuals of the drug choice Equation (1) and use
pattern Equation (2), as well as the correlation of the residuals of
the use pattern and outcome Equations (3a) and (3b) may also
affect the standard errors and bias of parameter estimates in the
various equations. Moreover, the use of IV methods with non-
linear outcomes equations is straightforward only for a small
number of specific functional forms. For example, although our
conceptual structural equation model calls for the use of IV and
Cox Proportional Hazard models in combination, the reader will
not find this estimator to be available in any statistical software
packages.

The appropriate estimation method for the above system of
equations critically depends on the structure of the covariance in
the error terms across Equations (1)–(3). If the error terms are
uncorrelated across equations, each equation can be estimated
independently of the others. Often, however, there is reason to
believe that the error covariances across each of the three equa-
tions may be nonzero. If so, parameter estimates and standard
errors may be biased if the equations are estimated indepen-
dently. If the equations are interrelated, any bias such as that
resulting from unobserved variables may be transferred to the
other equations as well.

Deriving Treatment Effects from Structural
Equation Models

The major challenge with the use of structural equation models is
that they do not contain a simple dummy variable providing the
magnitude, sign, and statistical significance of the estimated
treatment effect. In particular, when separate outcome models are
estimated for each treatment cohort, decomposition methods are
required to construct the treatment effect estimate. This is done
by estimating separate outcome equations for each treatment
cohort as in the above example. The coefficients in each equation
show the structural relationship between the explanatory vari-
ables and the outcome variable within each cohort. In addition to
these structural effects, the variables within each treatment
cohort may well have different distributions (e.g., different dis-
tributions on age, gender, race, medical comorbidities). By sub-
stituting the distributions of one treatment cohort through the
estimated equation of another cohort, it is possible to estimate

the expected value of the outcome holding both the structural
and distributional effects constant. Standard errors for the dif-
ferences in expected values across treatment groups can then be
generated using bootstrapping methods.

Regression-based decomposition methods have not been
widely used in outcomes research but have seen considerable use
in labor economics to investigate wage disparities by gender and
race [59]. Recently, this approach has been used to examine
racial disparities in access to health care.

Recommendations

• Include variables that are only weakly related to treatment
selection because they may potentially reduce bias more
than they increase variance.

• Variables related to outcome should be included in the
propensity score despite their strength of association on
treatment (exposure) selection.

• All factors that are theoretically related to outcome or treat-
ment selection should be included despite statistical signifi-
cance at traditional levels of significance.

• In the presence of time-varying confounding, standard sta-
tistical methods may be biased, and alternative methods
such as marginal structural models or G-estimation should
be examined.

• Researchers should always report on the strengths of their
instruments to allow the reader to assess the potential
strengths and weaknesses of the evidence presented.

• Researchers would be well advised to focus their efforts on
reducing the sources of bias (omitted variables, measure-
ment error, etc.), rather than wishing for a “magic bullet”
from an IV.

• Residual confounding should be assessed, and approaches
to estimating its effect, including sensitivity analyses, should
be included.

Residual Confounding

Residual confounding refers to confounding that has been
incompletely controlled, so that confounding effects of some
factors may remain in the observed treatment-outcome effect.
Residual confounding is often only discussed qualitatively
without trying to quantify its effect. Yet, methods are available to
attempt to assess the magnitude of residual confounding after
adjusted effects have been obtained [60,61]. Residual confound-
ing should be assessed and approaches to estimating its effect,
including sensitivity analyses, should be included.

Sensitivity Analyses Related to Residual Confounding
The basic concept of these sensitivity analyses is to make
informed assumptions about potential residual confounding and
quantify its effect on the relative risk estimate of the drug-
outcome association [62]. Several approaches are available to
obtain a quantitative estimate in the presence of assumed imbal-
ance of the confounder prevalence in the exposure or outcome
groups. The array approach varies the confounder prevalence in
the exposed versus the unexposed and the magnitude of the
confounder–disease association and obtains different risk esti-
mates over a wide range of parameter constellations [63].

Another approach is directed to the question on how strong
a single confounder would have to be to move the observed study
findings to the null (rule-out approach). This method allows us to
rule out confounders that would not be strong enough to bias our
results. A limitation of this method is that it is constrained to one
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binary confounder and that it does not address the problem of
the effect of several unmeasured confounders.

Approaches to reduce residual confounding from unmea-
sured factors include:

• case-crossover study designs;
• different time periods with same patient serving as case

and control.
• clinical details in a subsample;

• addditional clinical information obtained on a subset
of patients to adjust main results.

• proxy measures;
• measured confounders may be correlated with unmea-

sured confounders. High dimension propensity scoring
may represent unmeasured covariate matrix.

• other methods.
• IVs.

Conclusions

The analysis of well-designed studies of comparative effectiveness
is complex. However, the methods reviewed briefly in this section
are relatively well established, in the case of stratification and
regression, and/or rapidly on their way to becoming so, in the
case of propensity scoring and IV analysis. Other methods, such
as marginal structural models and structural equation modeling
may not be as common yet in pharmaceutical outcomes research,
but we expect these to become more so in the near future. Indeed,
one may predict that longitudinal data analysis with time-varying
measures of exposure will be almost a requirement of good
observational research of treatment effects in the near future.
Many other techniques such as multinomial or ordered logit or
probit modeling, parametric survival analysis, transition model-
ing, nested models, G-estimation, and many others could not be
treated at all in our report. The use of all of these methods
requires extensive training, careful implementation, and appro-
priate balanced interpretation of findings.

Careful framing of the research question with appropriate
study design and application of statistical analysis techniques can
yield findings with validity, and improve causal inference of
comparative treatment effects from nonrandomized studies using
secondary databases.
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Department of Veteran Affairs Health Services Research and Development
grant HFP020-90. The views expressed are those of the authors and do not
necessarily reflect the views of the Department of Veteran Affairs.
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