The Logic of Causal Inference

Uwe Siebert, MD, MPH, MSc, ScD

- Dept. of Public Health, Health Services Research and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria
- (2) Area HTA, ONCOTYROL Center for Personalized Cancer Medicine, Innsbruck, Austria
- (3) Center for Health Decision Science, Department of Health Policy and Management, Harvard School of Public Health, Boston, MA, USA
- (4) Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Acknowledgment

This work was in part supported by UMIT and the COMET Center ONCOTYROL, which is funded by the Austrian Federal Ministries BMVIT/BMWFJ (via FFG) and the Tiroler Zukunftsstiftung/Standortagentur Tirol (SAT).

Estimands

The question is whether to ITT or not to ITT

- · Estimand reflects research question
 - Interest in policy effect (intention) or in actual <u>sustained</u> treatment effect of the drug?
 - If interest in sustained drug effect: adjustment for switching needed
 - If interest in policy effect: must compare strategies under assessment (i.e., scenario of no reimbursement of a new drug → no switching possible) → either do not allow for switching or adjust for switching or …
- · Estimand has implications on
 - Trial design, data to collect
 - Statistical methods
 - Communication of results (patients, clinicians, payers, etc.)

3

4

The Goal

Of interest: the **causal** effect of an intervention on an outcome

Intervention Treatment Strategy <u>Action</u> Disease Symptom Death Event <u>Outcome</u>

Causal Graph: Observational Study

A: Intervention of interest (Action)

- Y: Outcome of interest
- L: Other (co)variables

Causal Graph: Observational Study

- A: Intervention of interest (Action)
- Y: Outcome of interest
- L: Other (co)variables

5

RCT:

Randomisation \rightarrow A \longrightarrow Y

A: Intervention of interest (Action)

- Y: Outcome of interest
- L: Other (co)variables

Post-randomisation Confounding

RCT:

- Confounder L might be
 - Age, cognitive ability, etc.
 - Not influenced by treatment
- L = Time-independent confounder

7

Post-randomisation Confounding

Time-dependent Confounding

- Confounder AND
- · Intermediate step

James M. Robins

"Robins cut the Gordian knot by inventing a statistic called the g-estimator that makes analysis of data that are simultaneously confounders and intermediate steps possible. [...]

After a long period of seeking converts to his unconventional methods, Professor James Robins is now considered to be one of the leading mathematical statisticians in the world."

> Harvard Public Health Review, Summer 2002:42-43

Causal Methods

- g-formula (nonparametric, parametric)
- g-estimation with structural nested models (SNM)
- Inverse probability weighting (IPW) with marginal structural models (MSM)
- Two-stage estimation

13

Inverse Probability Weighting (IPW) with Marginal Structural Models (MSM)

- MSMs = <u>models</u> for the <u>marginal</u> distribution of <u>counterfactual</u> outcomes (Robins 1998)
- "Structural" = "Causal"

Principle of Inverse Probability Weighting

Differential Prognosis Matters!

Inverse Probability of Cencoring Weighting (IPCW)

Differential switching 1. Censoring → selection bias 2. Weighting 3. Crude analysis

g-Estimation with Structural Nested Models

- Uses a structural (= causal) model to "remove" the (unknown) treatment effect from the treated: calculates the counterfactual outcome (e.g., survival time) being untreated (or nonswitcher)
- Used grid search or other methods to estimate effect (i.e., find the correct counterfactual outcome among many possible)
- Often used as structural model: rank preserving structural failure time model (RPSFTM)

Rank-Preserving Structual Failure Time (RPSFT) Model

Two-Stage Estimation

- Developed for RCTs
- Assume a secondary baseline (e.g., at progression), when patients switch
- Estimate switching effect controlling for timeindependent confounders at secondary baseline
- Remove switching effect (= treatment effect) from switchers
- Perform crude analysis

Key Assumptions of Different Causal Methods

- g-formula
 - No unmeasured confounding
- IPCW
 - No unmeasured confounding (for weight functions)
- RPSFT
 - Common treatment effect (for structural model)
 - Perfect randomization
 - (in observational studies: No unmeasured confounding)
- TSE
 - Switching after progression (secondary baseline)