Evolving Methods for Staging Patient Registries in Mature & Emerging Markets

ISPOR 7th Asia-Pacific Conference
Singapore
4 September 2016

Workshop Leaders

David Thompson
Senior Vice President, Real World Evidence Consulting, Late Stage, inVentiv Health
David.Thompson@inventivhealth.com

Jianwei Xuan
Professor, Director of Health Economics Research Institute
School of Pharmacy
Sun Yat-Sen University
jianweixuan1@optonline.net

Linda Liong
Director, Project Management, Late Stage Operations, APAC, inVentiv Health
Linda.Liong@inventivhealth.com
Workshop Objectives

- General objective is to compare and contrast traditional versus novel methods for the conduct of patient registries

- Specific objectives include:
 - Describe how electronic medical records (EMRs) can impact study planning, patient identification & recruitment, and data capture
 - Provide a case study of a recent disease registry conducted in the AsiaPac region using traditional methods
 - Present a hospital-based EMR database in China and demonstrate how it could be used to facilitate conduct of observational studies

Patient Registries: Traditional vs Novel Methods

Traditional paper-based approaches to patient identification & data collection

Newer electronic approaches to patient identification & data collection
EMRs & Registries: Square Peg in Round Hole?

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EMRs</th>
<th>Registries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collected for …</td>
<td>Individual patient health tracking & physician orders support</td>
<td>Population research</td>
</tr>
<tr>
<td>Patients included</td>
<td>All in practice</td>
<td>Selected based on protocol</td>
</tr>
<tr>
<td>Provider-induced variability in data collection</td>
<td>Lots</td>
<td>None</td>
</tr>
<tr>
<td>Practice-based customization of data collection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Data formats</td>
<td>Structured & unstructured</td>
<td>Structured & controlled vocabularies</td>
</tr>
<tr>
<td>Timing of data collection</td>
<td>Tied to patient encounters</td>
<td>Tied to protocol</td>
</tr>
<tr>
<td>Data quality assurance</td>
<td>Limited</td>
<td>Research specific validation rules</td>
</tr>
<tr>
<td>Data standards</td>
<td>HL7</td>
<td>CDISC</td>
</tr>
</tbody>
</table>

Role of EMRs in Registries

- EMR databases can be used to assess protocol feasibility
- EMR databases can be used to prescreen patients for eligibility
- EMR networks can be tapped into to identify potential investigators based on current patients
- EMRs can be used to remind providers of registries
- EMRs can be programmed with pop-up boxes indicating potential patient eligibility
- Registry CRFs can be programmed into EMRs to facilitate data capture
- EMRs can autofeed data to registry CRFs
EMR Systems Create Provider/Patient Networks

Retro-to-Prospective Hybrid Study Designs

Combine insights from retrospective analyses of EMR data

With prospective data collection from patients in these analyses

As well as the physicians who treated them

To reduce longitudinal follow-up & overall costs of study execution
A Cost Spectrum of Study Designs

- Studies involving different kinds of data sources naturally array across the cost spectrum according to time & effort in data collection.

- Historically, much has been done on either end of the spectrum, but not much in the middle.

- Novel approaches leveraging EMR databases for data analysis & patient outreach are providing design alternatives in mid-range of costs.

Case Study

Technology @ Present

Presenter - Linda Liong
Primary Objective

To measure the comparative efficacy of double and triple oral therapies:
• metformin + sulfonylurea,
• metformin + sulfonylurea + TZD (Thiazolidinediones) and
• metformin + sulfonylurea + DDP-IV (Dipeptidyl Peptidase – 4) inhibitor,
on glycemic control from baseline over a 24-week treatment period in patients with type 2 diabetes mellitus using defined clinical laboratory measurements

Protocol Inclusion/Exclusion Criteria – Highlights

Inclusion criteria
• Patients with a history of clinical diagnosis of established type 2 diabetes mellitus defined by the ADA criteria 2012
• Patients with stable double oral therapy of metformin + sulfonylurea, triple oral therapy of metformin + sulfonylurea + TZD and triple oral therapy of metformin + sulfonylurea + DDP-IV inhibitor for at least 12 weeks at the screening visit

Exclusion criteria
• Patients with type 1 diabetes mellitus or secondary forms of diabetes
• Patients who have been treated with insulin for ≥7 days within 3 months prior to the screening visit
• Patients with a history of acute diabetic complications such as diabetic ketoacidosis
• Patients taking concomitant gemfibrozil or other strong cytochrome P450 (CYP)2C8 inhibitors
Current technology over 3 years

- Protocol & ICF approved
- Database set up

Sites – screen/enroll patients, patient visits completed

Data collected into EMRs / paper records and transcribed into EDC system

Data clarification

Query resolution

Current Challenges & Novel Technology Solutions

<table>
<thead>
<tr>
<th>Current Challenges</th>
<th>Novel Technology Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator selection</td>
<td>- EMR databases can be used to assess protocol feasibility</td>
</tr>
<tr>
<td>• based on clinical trials/research experiences</td>
<td>- EMR databases can be used to prescreen patients for eligibility</td>
</tr>
<tr>
<td>• Investigator’s interest in research participation</td>
<td>- EMR networks can be tapped into to identify potential investigators based on current patients</td>
</tr>
<tr>
<td>• Patient recruitment - pre-screen patients for eligibility as quick assessment (accuracy?)</td>
<td>- EMRs can be programmed with pop-up boxes indicating potential patient eligibility – speed up identification process</td>
</tr>
<tr>
<td>• Patient selection in accordance to protocol full I/E criteria – limited number of eligible patients</td>
<td>- After informed consent taken, eligible patient data is readily available</td>
</tr>
<tr>
<td>• Patient pool saturation</td>
<td></td>
</tr>
<tr>
<td>• Screen failures</td>
<td></td>
</tr>
<tr>
<td>• For this registry, 2 protocol amendments to reduce sample size</td>
<td></td>
</tr>
<tr>
<td>• Enrollment rate calculations based on estimated number of available eligible patients (& referrals) = Extended enrollment period (Still a great struggle)</td>
<td></td>
</tr>
</tbody>
</table>
Current Challenges & Novel Technology Solutions

<table>
<thead>
<tr>
<th>Current Challenges</th>
<th>Novel Technology Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site resources needed</td>
<td>• Registry CRFs can be programmed into EMRs to facilitate data capture</td>
</tr>
<tr>
<td>• Screen and recruit patients, manage study activities</td>
<td>• EMRs can autofeed data to registry CRFs – No data entries required</td>
</tr>
<tr>
<td>• Post study (patient) visits: Perform</td>
<td>• Minimal site resources needed</td>
</tr>
<tr>
<td>• Data transcription from EMRs/paper medical records = data entries into eCRFs</td>
<td>• Minimal CRA resources needed</td>
</tr>
<tr>
<td>• Data cleaning – query resolution</td>
<td>• Entire registry duration reduced</td>
</tr>
<tr>
<td>Due to other “priorities” from existing workload for clinical trials (higher</td>
<td>All adds up to significant cost savings</td>
</tr>
<tr>
<td>investigator fees & SC fees)</td>
<td></td>
</tr>
<tr>
<td>Limited number of on-site monitoring visits & remote monitoring by CRAs =</td>
<td></td>
</tr>
<tr>
<td>reduced site interactive time to motivate site teams & getting site resources</td>
<td></td>
</tr>
</tbody>
</table>

Medical Big Data Analysis to Support Real World Patient Registry Studies
- China Example

Jianwei Xuan, PhD.
Professor, Health Economic Research Institute, Sun Yat-shen University
Singapore. 09. 2016
SuValue EMR Database
———Medical Big Data In the Cloud

Brief Introduction of SuValue database

SuValue is a medical RWD database provider which obtains the complete HIS/EMR data from independent hospitals in various provinces/cities of China.

- Up to the July, 2016, completely cleaned and structured data from 15 hospitals were included in the database.
- It is estimated that the database will cover 50 hospitals by the end of 2016 in various provinces/cities of China.
- It will reach the amount of 500 hospitals within 3 years.
Database Structure

Quality of SuValue database:

All the raw data collected from all hospitals have been cleaned and de-identified before transfer to research database (final database).

- All variables had been standardized as *structured data* follow by well-known *standard coding system (ICD-10, ATC code)*.
- Medical records from same patient have been integrated in order to provide *longitudinal record*.
Data Components:

- The database includes the inpatient and outpatient data of different levels of hospital from the Tier 2 hospital (80%) to tertiary hospitals (20%).
- This database includes all EMR data elements from the HIS, LIS, and PACS systems. It incorporates all the following detail information:
 - Patients’ demographics, insurance information
 - Provider information
 - Diagnostic (ICD-10), comorbidities, and treatment outcomes
 - Lab details
 - Prescription information
 - Hospitalization information
 - All health care resource utilization and cost information
 - Others

Typical research questions that can be addressed by the data source:

- Cost, Burden of Illness Study
- Real World Clinical Effectiveness Study
- Real World Patient Registry
Real World Patient Registry Studies – ideal situation

- Large Sample Size
- Fast Recruitment
- Ability to recruit patients who are more likely to react to particular treatments or potentially have less side effects
- Ability to generate real world effectiveness information

Real World Patient Registry Studies – Big Data Example

Study Objectives:

To measure the comparative efficacy of double and triple oral therapies:

- metformin + sulfonylurea,
- metformin + sulfonylurea + TZD (Thiazolidinediones) and
- metformin + sulfonylurea + DDP-IV (DiPeptidyl Peptidase – 4) inhibitor,

on glycemic control from baseline over a 24-week treatment period in patients with type 2 diabetes mellitus using defined clinical laboratory measurements
Real World Patient Registry Studies – Big Data Example

Inclusion criteria

• Patients with a history of clinical diagnosis of established type 2 diabetes mellitus defined by the ADA criteria 2012

• Patients with stable double oral therapy of metformin + sulfonylurea, triple oral therapy of metformin + sulfonylurea + TZD and triple oral therapy of metformin + sulfonylurea + DDP-IV inhibitor for at least 12 weeks at the screening visit

Exclusion criteria

• Patients with type 1 diabetes mellitus or secondary forms of diabetes

• Patients who have been treated with insulin for ≥7 days within 3 months prior to the screening visit

• Patients with a history of acute diabetic complications such as diabetic ketoacidosis

• Patients taking concomitant gemfibrozil or other strong cytochrome P450 (CYP)2C8 inhibitors

Real World Patient Registry Studies – Big Data Example:

<table>
<thead>
<tr>
<th>Type of Encounter</th>
<th>Diabetic Patients</th>
<th>Hypertension</th>
<th>Hyperlipidemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory</td>
<td>188,269</td>
<td>325,652</td>
<td>12,995</td>
</tr>
<tr>
<td>Hospitalizations</td>
<td>5,001</td>
<td>9,742</td>
<td>336</td>
</tr>
</tbody>
</table>
Real World Patient Registry Studies – Big Data Example

Big Data Analysis to Support Real World Patient Registry Study:

1. Ability to identify patients by applying the inclusion and exclusion criterial in the Suvalue database to identify right patients
2. Ability to assess the feasibility of the study
3. Potentially can trace these patients to the site and work with site investigators to recruit patients under considerations
4. Running risk factor analysis to identify which inclusion and exclusion criterial could potentially have more impact on the recruitment of the patients.
5. Identify subgroup patients who are more likely to react particular treatments
6. Identify subgroup patients who are more likely have less ADRs

End Results: Improve Efficiency and Effectiveness to Run the Study

Thanks!