Blood Pressure and the Risk of Chronic Kidney Disease Progression Using Multistate Marginal Structural Models in the CRIC Study

Alisa J. Stephens-Shields, Ph.D.

Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania

Joint work w/ Wei Yang, Andrew Spieker, Tom Greene, and Marshall Joffe

Chronic Renal Insufficiency Cohort Study (CRIC)

- CRIC: Prospective, multicenter, observational study of 3,708 adult patients with mild to moderate chronic kidney disease
- Duration of follow up: Annually from 0 to 7 years, median of 5.7 years

Study Question: How does systolic blood pressure affect disease progression among 6 possible disease states?

Exposure Levels

SBP modeled in 1 of 4 categories at each year

- 1 : SBP < 120 mm Hg
- 2 : $120 \le SBP < 130 \text{ mm Hg}$
- 3 : 130 \leq SBP < 140 mm Hg
- 4 : SBP ≥ 140 mm Hg

Outcome Levels

Disease states: Defined by levels of estimated Glomerular Filtration Rate (eGFR), ESRD, and death at each year

- 1: eGFR ≥ 60
- 2: eGFR [45,60)
- 3: eGFR [30, 45)
- 4: eGFR (0, 30)
- 5: End Stage Renal Disease (Absorbing)
- 6: Death (Absorbing)

Chronic Kidney Disease Progression

Patients transition among states at each annual follow up

Chronic Kidney Disease and Blood Pressure

Relationship between hypertension and CKD complex and challenging to measure

- Hypertension both a cause and effect of CKD
- Several time dependent confounders (eg proteinuria or use of ACEs/ARBs) exist for the blood presssure/CKD relationship
- Standard regression analyses fail to provide unbiased estimates of causal joint exposure effects in the presence of time-dependent confounding, even if all relevant confounders are measured

Marginal Structural Models (MSMs)

- Developed by Robins (1997) to estimate causal contrasts in the presence of time-dependent confounding by covariates
- Model for the marginal mean of outcomes that would have been observed if everyone in the population had a particular exposure sequence
- Accounts for time-dependent confounding by using inverse probability weights (IPW) to remove confounding effect of time-varying covariates

Extend MSMs to Multistate Models:

- Estimate the effect of time-varying blood pressure on probability of transition among mild and severe CKD states
- Estimate the effect of time-varying blood pressure on marginal probability of being in a given state at the end of follow up
- Avoid composite endpoints that may present challenges for interpretation
- Avoid treating death as a censoring event

Parameters of Interest

- Transition probability: the probability of potential outcome state under a specified SBP sequence given the outcome state in the previous year
 - What's the population probability of transitioning from mild CKD to ESRD at a given time if everyone were to always have well controlled blood (≤ 120 mm Hg) pressure up until that time?
- Marginal probability: the marginal probability of potential outcome state at the end of follow up under a specified SBP sequence
 - What proportion of the population has advanced CKD by the end of followup if all individuals were to always have well controlled blood pressure versus always having high (> 140 mm Hg) blood pressure?

Multistate Marginal Structural Models (MS-MSMs) and Estimation

- Model: Longitudinal marginal stuctural baseline-category logit model
 - Effect of SBP sequence for a single transition time characterized by odds ratios

• Estimation of Transition Probability: Weighted estimating equations

- Weights are the inverse probability of an individual's observed SBP sequence
- Weights estimated by multinomial regression of SBP categories onto time dependent confounders cardiovascular disease, diabetes, BMI, use of ACEs or ARBs, number of antihypertensive medications, proteinuria, current eGFR
- Estimation of Marginal Probability: matrix product of estimated CKD transition probability matrices under a specified SBP sequence

Aggregate Observed Transitions Among eGFR-defined States

For modeling, several rare transitions set to 0 probability

- $1 \rightarrow 4, 5$
- $\bullet \ 2 \rightarrow 5$
- $\bullet \ 4 \rightarrow 1$

	Y_{j+1}						
Yj	\geq 60	[45, 60)	[30, 45)	(0,30)	ESRD	Death	
≥ 6 0	2139	473	42	0	1	27	
[45, 60)	478	2332	844	54	3	50	
[30, 45)	34	543	2941	921	47	120	
(0, 30)	1	20	347	2428	547	146	

Log Odds Ratios of Blood Pressure Effects for Transitions from State 1 from MS-MSM

Log Odds Ratios of Blood Pressure Effects for Transitions from State 4 from MS-MSM

Contrast of Log Odds Ratios of Blood Pressure Effects for Transitions from State 4 for MS-MSM and Standard Regression

Yearly Marginal Probabilities of CKD State by Blood Pressure Trajectory

Differences in Marginal Probabilities of CKD State by End of 7 years for MS-MSM versus Standard Regression

	Standard (Unweighted)	MS-MSM		
SBP	eGFR	ESRD	eGFR	ESRD	
	\geq 60		\geq 60		
< 120	27.4	9.3	25.5	13.1	
	(25,30)	(7,11)	(24, 31)	(7.3, 11)	
[120, 130)	14.2	13.3	12.9	13.5	
	(11,18)	(15,21)	(10, 18)	(9.7, 17))	
[130, 140)	8.0	26.4	9.1	26.1	
	(5, 11)	(21, 32)	(4.8, 12)	(19, 34)	
\geq 140	2.1	53.9	3.5	45.5	
	(1.2,3.0)	(50,58)	(1.2, 3.2)	(49, 58)	

- Calculated under the exposure sequence where subjects stay in the indicated SBP category for the duration of follow up
- 95 % CI calculated by bootstrap percentile method

- Formulated marginal structural models for multistate outcomes
- Demonstrated an effect of systolic blood pressure on transitions among multiple CKD states
 - Higher SBP results in greater likelihood of ESRD and lower likelihood of mild CKD

Acknowledgements

CRIC Study Team Members Dawei Xie Amanda Anderson Sally Thompson Qiang Pan

Potential Confounders and Censoring

Baseline:

Sex, race, education, hypertension awareness, baseline values of all time-dependent covariates

Time-Dependent:

Age, cardiovascular disease, diabetes, BMI, use of ACEs or ARBs, number of antihypertensive medications, proteinuria, current eGFR

Censoring Events: Loss to follow up

Unweighted marginal probabilities

	eGFR Level				Absorbing	
SBP	\geq 60	[45,60)	[30,45)	< 30	ESRD	Death
< 120	27.4	19.9	20.6	10.9	9.3	11.9
	(25, 30)	(18, 22)	(18, 23)	(9, 12)	(7, 11)	(9, 14)
[120, 130)	14.2	18.1	20.2	19.7	13.3	14.5
	(11, 18)	(15, 21)	(17, 24)	(16, 23)	(10, 17)	(11, 18)
[130, 140)	8.0	12.4	18.3	20.7	26.4	14.2
	(5, 11)	(10, 15)	(15, 22)	(17, 25)	(21, 32)	(10, 19)
\geq 140	2.1	4.7	8.1	15.1	53.9	16.1
	(1.2, 3.0)	(3.6, 5.8)	(6.8, 9.4)	(13, 17)	(50, 58)	(13, 19)

Log Odds Ratios of Blood Pressure Effects for Transitions from State 2

Log Odds Ratios of Blood Pressure Effects for Transitions from State 3

