Methods and Preliminary Results of the ISPOR Oncology Health Economic Modeling Special Interest Group

ISPOR 20th Annual European Congress
Glasgow, Scotland
6 November 2017

Presenters

- Ágnes Benedict, MSc, BSc, Senior Research Leader, Evidera, Inc., Budapest, Hungary (Co-Chair)
- Noémi Muszbek, MSc, BSc, Senior Research Scientist, Evidera, Inc., London, England, UK (Co-Chair)
- Nermeen Ashoush, PhD, Head of Health Economics Unit, Center for Drug Research & Development, Assistant Professor in Clinical Pharmacy, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Hena Qureshi, BSc BA, Student, Community Health Sciences, University of Calgary, Calgary, AB, Canada
Leadership Group

- Khalid Kamal, M.Pharm, PhD, Associate Professor, Pharmacy Administration, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA (Co-Chair)
- Raquel Aguilar-Ibáñez, MSc, BSc, Senior HTA & OR Manager, MSD, Hoddesdon, England, UK
- Kathi Apostolidis, Vice President, European Cancer Patient Coalition (ECPC), Brussels, Belgium
- Nermeen Ashoush, PhD Head of Health Economics Unit, Center for Drug Research & Development, The British University in Egypt, Cairo, Egypt
- Seungjin Bae, RPh, ScD, Assistant Professor, EWHAn Women’s University, College of Pharmacy, Seoul, South Korea
- Marissa Betts, MS, Senior Research Associate, Evidera, Lexington, MA, USA
- Elizabeth Cahn, PhD, Patient Advocate, Dana-Farber/Harvard Cancer Center Breast Cancer Advocacy Group, Boston, MA, USA
- Marco Chiumente, MSc, National Scientific Coordinator, Italian Society of Clinical Pharmacy and Therapy (SCiFaCT), Turin, Italy
- Manjusha Hurry, MSc, BSc, BA, Senior Manager, Health Economics (Oncology), AstraZeneca Canada, Mississauga, ON, Canada
- Rémi Marty, PharmD, Health Economist, Belgium
- Chad Patel, PharmD, Field Director, HEOR, Bristol Myers Squibb, Chicago, IL, USA
- Xavier Pouwels, MSc, Junior Researcher, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
- James Ryan, MSc, BA, Oncology Group Director, Health Economics and Payer Analytics, AstraZeneca Global, Cambridge, England, UK
- Bettina Ryll, MD, PhD, Founder, Melanoma Patient Network Europe, Uppsala, Sweden
- John W. Stevens, PhD, BSc, Reader in Decision Science, ScHARR, The University of Sheffield, Sheffield, England, UK
- Sorrel Wolowacz, PhD, Head, EU Health Economics, RTI Health Solutions, Manchester, England, UK

Student Volunteers

- Jeromie Ballreich, PhD, MS, BA, Johns Hopkins University, Baltimore, MD, USA
- Stefanie Bienert, MA, BA, DKFZ, Heidelberg, Germany
- Timea Csaikvari, BS, MSc, University of Pécs, Pécs, Hungary
- Rajesh Desai, MS, University of Florida, Gainesville, FL, USA
- Yuchen Ding, BS, MS, University of Southern California, Los Angeles, CA, USA
- Mihaela Georgieva, PhD, BA, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Luiza Grazziotin, MSc, University of Calgary, Porto Alegre, Brazil
- Hrishikesh Kale, MS, Virginia Commonwealth University (VCU), Richmond, VA, USA
- Yi Liang, MSc, BPharm, University of Texas – Austin, Austin, TX, USA
- Mark Martinez, BA, University of Texas – Austin, Austin, TX, USA
- Onyinye (Sabina) Nduaguba, MSc, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
- Purva Parab, BPharm, Virginia Commonwealth University (VCU), Richmond, VA, USA
- Hena Qureshi, BSc, BA, University of Calgary, Calgary, AB, Canada
- Ruta Sawant, MS, BSc, University of Houston, Houston, TX, USA
- Manvi Sharma, PharmD, MS, University of Houston, Houston, TX, USA
- Daniel Simmons, Rutgers University, Piscataway, NJ, USA
- Swee Sung Soon, BSc, National University of Singapore, Singapore
- Laszlo Szilberhorn, MSc, Eötvös Loránd University, Budapest, Hungary
- Navneet Upadhyay, MS, University of Houston, Houston, TX, USA
- Réka Vajda, MSc, BSc, University of Pécs, Pécs, Hungary
- Xiaomeng (Emma) Yue, BS, University of Cincinnati, Cincinnati, OH, USA
- Lu Zhang, MSc, University of Texas – Austin, Austin, TX, USA
Why Oncology Modeling?

- Increased focus on the assessment of the value of oncology drugs
 - Cancer Drugs Fund in the UK - Revised
 - Value frameworks in oncology
 - National Comprehensive Cancer Network (NCCN) Evidence Blocks (23 indications completed)
 - American Society of Clinical Oncology (ASCO) Value Framework - Revised
 - European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) – In revision

- New challenges in the assessment of value as standard methods are not applicable to immuno-oncology treatments
- Methods development questions standard methods used in economic modeling

Aims of the Working Group

- Advance knowledge and understanding around oncology economic modeling
- Provide education and resources for researchers interested in the health economic modeling of oncology products
- Stimulate debate and encourage research
- Develop best practices in selected aspects of economic modeling, specific to oncology
- Foster discussions among researchers working in the field in different organizations
- Foster communication and collaboration between health economists and medical organizations and patient representatives (ISPOR Patient Representatives Roundtable)
Importance of Utilities and Costs in Oncology

- Utilities are one of the most influential parameters in cost-utility analyses for advanced tumors
- Most influential inputs in NICE TAs (2011-2015)

Modeling Utilities and Costs After Disease Progression or Towards the End of Life in Advanced Oncology

- It is essential that data reflect the decision question and are appropriately elicited/colllected/analyzed and implemented
- Traditionally: Many models include a single post-progression/post-response utility/cost data-point
- Are often sourced from previously conducted literature reviews and potentially are not directly applicable to decision question
- This might be due to limited high quality data
- However can influence cost-effectiveness, the pricing and reimbursement decisions

- It is important to assess this data gap in order to provide high quality economic evaluations to inform these decisions
Overview of SIG Project

- **Aims:**
 - To review methods and availability of data describing health utilities and costs in advanced cancer after disease progression or towards the end of life in oncology
 - To identify current data gaps, issues with data quality
 - To highlight examples of high quality studies
 - To assess challenges in eliciting/collecting high quality data and analyzing and implementing inputs in economic evaluations
 - To discuss and suggest topics for future research and best practices

- **A two-step approach:**
 - Systematic literature review
 - Case study

Systematic Review Process

Predefined Protocol

- Study objectives
- Search strategy
 - Sources (databases, grey literature sources)
 - Search terms & combinations
 - Publication date range, language and other limits
- Selection strategy
 - Inclusion and exclusion criteria
 - Screening methods, quality control
- Qualitative synthesis methods
 - Summarize findings by cancer type
 - Economic modeling methods / health-utility data / resource use & costs
Search Strategy – Sources & Limits

Peer-reviewed indexed literature databases

- Medline (via PubMed)
- Embase (via embase.com)

Publication date range

- Past 3 years (April 2013 to May 2016)
- Aim is to identify contemporary methods and data (methods & study designs evolving rapidly)

Limits

- Published in English language
- Items with abstracts, human subjects
- Not a case report, commentary, editorial or conference abstract

Grey literature

- Reports with sufficient detail (e.g., NICE appraisal documentation)

NICE = National Institute for Health and Care Excellence

Search Strategy – Search Terms

<table>
<thead>
<tr>
<th>Topic</th>
<th>#</th>
<th>MEDLINE Search Algorithm (Adapted for EMBASE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>7</td>
<td>#4 OR #5 OR #6</td>
</tr>
</tbody>
</table>
Study Screening – Eligibility Criteria

P Population
- Metastatic or locally advanced disease: TNM stage IIIb/IV or equivalent, regional (N2+) or distant metastases (M1)
- Receiving palliative care or progressed on prior treatment

IIC Investigational Interventions & Comparators
- Any systemic pharmacotherapy for treatment or palliative care
- Observational studies not evaluating specific therapies
- Adjuvant therapy
- Non-pharmacologic therapy (surgery, radiotherapy), diagnostic tests, quality of care

O Outcomes

S Study Design

N = node; M = metastasis; TNM = tumor, node, metastasis
Study Screening – Eligibility Criteria

<table>
<thead>
<tr>
<th></th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Population</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Investigational Interventions & Comparators</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Outcomes Primary studies & non-model based economic evaluations:</td>
<td>No reported outcomes of interest</td>
</tr>
<tr>
<td></td>
<td>• Health-care after disease progression/response to treatment (resource use or costs, direct or indirect)</td>
<td>• No numerical data for the outcomes of interest</td>
</tr>
<tr>
<td></td>
<td>• Health utility estimates</td>
<td>• Documents from health technology assessment websites that do not provide</td>
</tr>
<tr>
<td></td>
<td>Model based economic evaluations:</td>
<td>detail of the outcomes of interest for a population of interest</td>
</tr>
<tr>
<td></td>
<td>• Comparison of at least two interventions for costs and health benefits (LY, QALY, progression-free LY)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Study Design</td>
<td></td>
</tr>
</tbody>
</table>

LY = life-year; QALY = quality-adjusted life-year

*Relevant systematic reviews retrieved to check bibliography for relevant studies.
CEA = cost-effectiveness analysis; CMA = cost-minimization analysis; CUA = cost-utility analysis
Study Screening – Methods

Abstracts are tagged according to cancer type

The Flow Diagram of the Systematic Literature Review Process

Identification
- Records identified through database searching (n = 5,910)
- Additional records identified through other sources (n = TBA)

Screening
- Records after duplicates removed (n = 4,839)
- Records screened (n = 4,839)
- Records excluded (to be detailed) (n = 4,171)

Eligibility
- Full-text articles assessed for eligibility (n = 668)
- Full-text articles excluded, with reasons (n = TBA)

Included
- Studies included in qualitative synthesis

Extraction templates

Extraction template

Extraction of data/methods focusing on post-progression / response or end of life

- Study characteristics:
 - Country, indication(s), objective(s)
- Study description
 - Scope, description of treatments included, study population, time horizon
 - Economic evaluation and model
- Study design
 - Costs: type of costs, resources, methods
 - Utilities: elicitation, valuation, mapping
- Description of results
- Values

Short quality assessment questionnaire

- Sufficient description:
 - Methods, comparators
- Potential bias
- Uncertainty
- Validation
- For economic evaluations:
 - Consistency of population in data sources
- Use of post-progression / response data
- Key strength and limitations
- Best practice flags
PRELIMINARY RESULTS

Preliminary Utility Findings: Breast Cancer

<table>
<thead>
<tr>
<th>Table 1: Sample Size for the Post-progression Health State Utility Estimate</th>
<th>Table 2: Number of Assessments post-progression, per patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of utility estimates identified</td>
<td>Number of assessments post-progression, per patient</td>
</tr>
<tr>
<td>Primary studies</td>
<td>1 (17%)</td>
</tr>
<tr>
<td>Used in economic evaluations</td>
<td>1 (17%)</td>
</tr>
<tr>
<td>Study design:</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Post hoc analysis of trial</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Longitudinal observational study</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Cross-sectional observational study (clinical setting)</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Patient survey</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Vignette study</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Expert opinion</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Unclear</td>
<td>2 (33%)</td>
</tr>
</tbody>
</table>

PBM = preference-based measure; HCP = healthcare professional; NA = not applicable
Preliminary Utility Findings: Breast Cancer

Examples of Strengths and Limitations

<table>
<thead>
<tr>
<th>Example strengths</th>
<th>Example limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship between time from death and utility was reported.</td>
<td>The progressive state in the vignette study was intended to describe an average patient who was not receiving active treatment and was in palliative care; the model health state included subsequent active treatment</td>
</tr>
<tr>
<td>Factors associated with low utility were identified (e.g. fatigue, pain, depression)</td>
<td>Small sample size for the post-progression utility estimate (25-57 respondents)</td>
</tr>
<tr>
<td></td>
<td>Low response rate; patient characteristics (e.g. site of metastasis) may not be typical of all patients and patients with poorer health status may be less likely to respond - could result in upward bias of utility estimates</td>
</tr>
<tr>
<td></td>
<td>During patient interviews to develop vignettes, there was quite substantial idiosyncratic variation between women, and their responses provided information that was different from what was identified from the literature. Due to these differences, the health states may not be entirely representative of advanced breast cancer as experienced by women in each country</td>
</tr>
<tr>
<td></td>
<td>Utility estimates used in models were referenced to other model publications and insufficient detail were reported to determine whether utility data are relevant for the model population or to assess data quality</td>
</tr>
</tbody>
</table>
Good Practice Example

Cross-sectional observational study

- Respondents were 114 palliative care patients (27 breast cancer, 30 prostate cancer, and 57 colorectal cancer)
- Time to death followed up for all respondents
- Utility presented with time from death
- Factors associated with lower HRQoL included fatigue, pain and depression

Limitations

- Potential selection bias (small patient sample in each cancer and low response rate)

Potential improvements

- Larger sample size
- Proxy respondent for patients too ill to complete questionnaires (with investigation of potential bias in proxy responses)
- Longitudinal design to characterise utility changes over time
- Collect caregiver’s own utility

Preliminary Findings from Cost Studies: Breast Cancer

<table>
<thead>
<tr>
<th>Number of Cost Studies Identified</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Post-progression state</td>
<td>4 (57.1%)</td>
</tr>
<tr>
<td>- Pre-/Post-progression state</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>- Not clear</td>
<td>2 (28.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- First line</td>
<td>2 (28.6%)</td>
</tr>
<tr>
<td>- End of life/Palliative Care</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>- Not clear</td>
<td>4 (57.1%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Treatment - Chemotherapy</th>
<th>3 (42.9%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age of Patients</td>
<td>59.6 yrs (49.6 yrs - 77.1 yrs)</td>
</tr>
<tr>
<td>Average Study Time Horizon</td>
<td>4.62 yrs (1 yr – 7 yrs)</td>
</tr>
<tr>
<td>Type of Study – Observational Studies</td>
<td>6 (85.7%)</td>
</tr>
<tr>
<td>Country for Resource Use</td>
<td></td>
</tr>
<tr>
<td>- USA</td>
<td>4 (57.1%)</td>
</tr>
<tr>
<td>- Canada</td>
<td>2 (28.6%)</td>
</tr>
</tbody>
</table>
Preliminary Findings from Cost Studies: Breast Cancer

Cost Categories
- Adverse Event: 1 (14.3%)
- End of Life: 1 (14.3%)
- Indirect Costs: 1 (14.3%)

Types of Resources Included
- Drugs: 2 (28.6%)
- Hospitalizations: 2 (28.6%)
- Procedures: 1 (14.3%)
- Imaging: 1 (14.3%)
- Social Care: 1 (14.3%)

Strengths
- Resource use mostly reported for post-progression period
- Patients reported to be in the metastatic stage

Limitations
- Studies focused on the utilization of resources
- Cost of resources were not included or the factors that influenced costs
- Small sample sizes and generally limited to one center
Examples of Strengths and Limitations

<table>
<thead>
<tr>
<th>Example strengths</th>
<th>Example limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource use mostly reported for post-progression period</td>
<td>Studies focused on the utilization of resources</td>
</tr>
<tr>
<td></td>
<td>Cost of resources were not included or the factors that</td>
</tr>
<tr>
<td></td>
<td>influenced costs</td>
</tr>
<tr>
<td></td>
<td>Small sample sizes and generally limited to one center</td>
</tr>
</tbody>
</table>

Preliminary Findings from Economic Evaluations: Breast Cancer

<table>
<thead>
<tr>
<th>Number of Studies Identified</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>7 (87.5%)</td>
</tr>
<tr>
<td>- No</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>- First line</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>- 2nd line</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>- 3+ line</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>- Not clear</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>Type of analyses</td>
<td>Cost-utility</td>
</tr>
<tr>
<td>- Societal</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>- 3rd party payer</td>
<td>5 (62.5%)</td>
</tr>
<tr>
<td>- Provider</td>
<td>1 (12.5%)</td>
</tr>
</tbody>
</table>
Preliminary Findings from Economic Evaluations: Breast Cancer

Post-progression/response period modeled with constant cost per cycle?
- Yes: 5 (62.5%)
- No: 2 (25.0%)
- NA: 1 (12.5%)

Post-progression/response period modeled with constant utility per cycle?
- Yes: 5 (62.5%)
- Partially: 1 (12.5%)
- NA/Not clear: 2 (25.0%)

Country for Resource Use
- USA: 3 (37.5%)
- UK: 3 (37.5%)
- China: 1 (12.5%)
- Canada: 1 (12.5%)