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A B S T R A C T
Background: Health technology assessments (HTAs) that take
account of future price changes have been examined in the literature,
but the important issue of price reductions that are generated by the
reimbursement decision has been ignored. Objectives: To explore the
impact of future price reductions caused by increasing uptake on
HTAs and decision making for medical devices. Methods: We dem-
onstrate the use of a two-stage modeling approach to derive estimates
of technology price as a consequence of changes in technology uptake
over future periods on the basis of existing theory and supported by
empirical studies. We explore the impact on cost-effectiveness and
expected value of information analysis in an illustrative example on
the basis of a technology in development for preterm birth screening.
Results: The application of our approach to the case study technology
generates smaller incremental cost-effectiveness ratios compared
with the commonly used single cohort approach. The extent of this
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reduction in the incremental cost-effectiveness ratio depends on the
magnitude of the modeled price reduction, the speed of diffusion, and
the length of the assumed technology life horizon. Results of value of
information analysis are affected through changes in the expected
net benefit calculation, the addition of uncertain parameters, and
the diffusion-adjusted estimate of the affected patient population.
Conclusions: Because modeling future changes in price and uptake
has the potential to affect HTA outcomes, modeling techniques
that can address such changes should be considered for medical
devices that may otherwise be rejected.
Keywords: cost-benefit analysis, diffusion of innovation, drug costs,
value of information.
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Introduction

Health technology assessments (HTAs) rarely take potential
future reductions in price caused by increased implementation
into account in their modeling of cost-effectiveness [1]. Reim-
bursement bodies such as UK’s National Institute for Health and
Care Excellence typically make assessments on the basis of a
single patient cohort and follow their costs and effects through
patients’ lifetimes or through a specific time horizon. Several
articles have explored how future cohorts can be incorporated
into cost-effectiveness analyses. Hoyle and Anderson [1] and
Hoyle [2,3] have established future cohort incremental cost-
effectiveness ratios (ICERs) to reflect future drug price reductions
and the time-varying mix of prevalent and incident patients,
which, conditional on differing parameter values for both groups,
affect final model outputs. Philips et al. [4] included future
cohorts and modeled changes in price, evidence, and competition
to explore how the decision time horizon in value of information
(VOI) analysis should be set.

These analyses, however, remain divorced from the decision-
making context of all reimbursement bodies. When future
changes are independent of the reimbursement decision, such
as price reductions following generic entry [5], these can be
accommodated by traditional “single cohort models” through
re-appraisal at future time points once these price changes occur.
Till then, the price parameter can be assumed to be constant and
the single cohort model without any price changes would be
adequate for decision making. Nevertheless, changes that are
dependent on the reimbursement decision, such as price changes
produced by increased uptake that have been observed in
medical devices [6] and are described as experience curves, must
be incorporated into the decision or else these price changes may
not be realized if the technology is rejected by the reimbursement
body. Consequently, patients will not get access to a technology
that, given sufficient uptake, could be cost-effective and provide a
positive incremental net benefit.

Central to this issue is a detailed consideration of uptake,
diffusion, and associated price changes. Uptake is defined, for the
purposes of this article, as the number of units of a technology
purchased through the health system relating to a specific
medical indication, whereas diffusion is defined as the process
of uptake growth over time. Both uptake and diffusion can also
refer to the presentation of the number of adoptions as a
proportion of the number of attainable or desirable adoptions.
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Table 1 – Definitions of parameters.

Parameter Definition

PNt Price at cumulative sales volume quantity Nt

α Experience curve parameter, the proportion of
initial price that price is reduced to

β Number of times that sales volume quantity
doubles

n Number of new per-period adoptions
M Total number of attainable adoptions
M* Number of desirable adoptions
t Period of time
Nt � 1 Cumulative number of adoptions up to t � 1
p Coefficient of external influence or innovation
q Coefficient of internal influence or imitation
cj Costs of intervention j
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The phenomenon of experience curves describes the impact of
increasing uptake of technologies on price. We performed a
literature review of studies citing experience curve literature
[6,7] and came to the conclusion that experience curves and
diffusion theory have not been merged and applied to an HTA
setting.

The aim of this article was to explore the impact of diffusion
and associated price changes on HTA. Because empirical evi-
dence of these price changes exists only for medical devices, the
proposed approach will be most relevant in this context,
although it could be used in any technology for which such
future price reductions are believed to be plausible. We first
demonstrate the use of a two-stage modeling approach on the
basis of existing theory and empirical evidence that includes
future changes in price and uptake. We then explore the impact
on cost-effectiveness and VOI analysis results in an illustrative
example.
ej Benefits of intervention j
TT1 Technology life horizon of technology T1
δ Term for discounting
r Discounting factor
NB Net monetary benefit
θ Vector of uncertain parameters
λ Willingness-to-pay threshold
TVOI VOI time horizon

VOI, value of information.
Methods

The Experience Curve Model

There is ample evidence for experience curves that shows how
increasing uptake leads to price reductions in several different
technologies as well as from a study of 20 medical devices by
Brown et al. [6]. Experience curves can be justified through a
technology’s competitive situation [6]. When the conditions of
perfect competition and perfect information are not satisfied,
pricing occurs above marginal costs, especially in R&D-intensive
industries [8]. The larger a market becomes, the more likely it is
for competitors to enter. In the health care industry, this would
typically occur after patent expiry but also before that via
between-patent competition through close substitutes [8]. With
increasing competition, prices are likely to fall. In addition,
economies of scale that describe reductions in costs with increas-
ing production volume may also lead to reduced costs and prices
[6,7]. Although price reductions that are consistent with an
experience curve model could in theory be present for all health
care products for which the market conditions highlighted here
exist, there is no evidence on experience curves in pharmaceut-
icals. Price changes observed for pharmaceuticals are typically
related to patent expiry [5], rather than to uptake and associated
production volumes. Consequently, this work appears to be more
applicable to the devices industry.

Experience curves relate technology price to uptake. More
specifically, it has been observed that prices of medical devices
decline to a percentage of the technology’s initial price every time
initial production volume doubles [6]:

PNt ¼
PN0 for 0oNto2N0

αβPN0 for NtZ2N0
,

(
ð1Þ

where Nt is the cumulative uptake or sales volume up to period t,
with PNt being the price at Nt; PN0 is the price that was set at initial
quantity N0, which is maintained until Nt Z 2N0; α is the
experience curve parameter or the percentage of the technology’s
initial price, with 0 o αo 1; and β is the number of times that the
initial quantity doubled, with β¼ log2

Nt
N0

h i
. Table 1 provides a

definition of all parameters and the equation is graphed with
different parameter values in Figure 2 and explained in the
Results section.

Equation 1 implies that prices remain stable until the initial
production quantity has doubled for the first time. Furthermore,
price is dependent on technology uptake through β, the number
of times that the initial quantity had doubled, rather than on
time. This highlights the need for another piece of information:
technology uptake over time.
The Uptake Model

Technology uptake is a time-dependent process that has been
described in the theory of diffusion of innovations. The theory of
diffusion was given prominence by Rogers [9] who, in 1962, gave
the impetus for further diffusion research of theoretical and
empirical nature. Rogers established a diffusion model that is
characterized by an s-shaped curve showing how cumulative
adoptions increase over time [10]. Although this generalization
may not apply to all technologies, the fact that full uptake does
not generally occur instantaneously is supported by studies that
highlighted that innovative health technologies, deemed cost-
effective in an HTA, were not adopted to their full potential
[11,12]. We are not aware of any other empirical evidence on
diffusion of medical devices and therefore assume that the s-
shape of diffusion holds. We use an established parameterized
diffusion model developed by Bass [13], which is a logistic model
with parameters reflecting the degree of innovation and imi-
tation as well as the overall attainable number of adoptions to
achieve an s-shaped growth.

nðtÞ¼p M�Nt�1ð Þþ q
M

Nt�1 M�Nt�1ð Þ, ð2Þ

where n(t) is the number of new adoptions in period t, with n(t) Z
0, t 4 0; p is the coefficient of innovation; q is the coefficient of
imitation, with q

p 41 to ensure the s-shape [10]; M is the total
number of attainable adoptions with M 4 0; and Nt�1 is the
cumulative number of adoptions up to t – 1. To our knowledge,
restrictions on p and q are not clearly defined in the diffusion
curve literature. We found that the model worked best at values
of 0opo0:1 and 0oqo1. This model is graphed in Figure 3 and
explained further in the Results section.

The Dynamic Cost-Effectiveness Model

The standard measure of assessing a technology’s value is the
ICER, which represents the incremental population mean costs
relative to the incremental population mean quality-adjusted
life-years (QALYs) of one technology compared with another.
Inferences about costs and benefits of health technologies are
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commonly based on population means assumed to reflect at least
one cohort of patients or mean of future cohorts [1].

ICER¼ ci�cj
ei�ej

, ð3Þ

where ci,cj and ei,ej are the population mean costs and effects of
interventions i and j, with c,eZ0.

Experience curves can be integrated into the cost-
effectiveness framework by modeling future periods up to a
certain technology-specific time horizon and using the experi-
ence curves and uptake models in the dynamic ICER calculation.
We assume that given a positive reimbursement decision, uptake
would follow Equation 2, and given a negative reimbursement
decision, no uptake of the technology would occur. Costs in
period t are now dependent on price and cumulative uptake up
to period t through the experience curve model. It is important to
note that we consider future incident cohorts in the modeling of
future periods. The reason we refer to periods instead of cohorts
is because price changes will also affect the first incident cohort
in future periods in technologies in which consumption occurs in
each period. In some cases, medical devices are associated with
one-off costs in the first period, in which case a future period
equals a future cohort.

To compare cost-effectiveness in this dynamic setting with
cost-effectiveness in a commonly used static setting with only
one period or cohort modeled, we propose summarizing the
average of costs over time up to the technology life horizon and
the average of effects over time in the average dynamic ICER
(Equation 4). For this, knowledge of the technology life horizon is
needed. This may be the time at which the technology is
anticipated to be replaced by a better technology or at which it
changes because of further product development. It may also be
useful to consider the per-period dynamic ICER in which the
costs and effects in one specific period (or cohort) are used for the
calculation. Contrary to other studies [1–3], we have refrained
from weighting the average dynamic ICER by uptake because
weighting would lead to assessing a mix of technologies rather
than to identifying the most efficient technology on the basis of
their costs and health effects. Uptake is therefore reflected in
each period’s (or cohort’s) costs, but not used to provide a
weighted average of incremental costs and effects.

∅ICERdyn¼
1
t

PT
Tj

t ΔcðPNt Þδ
1
t

PT
Tj

t ΔeðtÞδ
, ð4Þ

where Δc PNt

� �
is the difference in costs between interventions

over all incident and prevalent cohorts in period t, as a function
of price and uptake, and eðtÞ are effects in each period of time,
both summed up over the number of periods up to technology life
horizon TTj and discounted at a discount factor of δ¼ 1

ð1þ rÞt (where
r is the discount rate), with c PNt

� �
,e tð ÞZ0,rZ0.
The effect of the dynamic model on VOI analysis
VOI analysis provides the value of resolving decision uncertainty,
thus indicating the potential value of further research. The
expected value of perfect information (EVPI), for instance, quan-
tifies the expected opportunity loss associated with the overall
decision uncertainty present in an appraisal. Results of the EVPI
analysis, calculated as in Philips et al. [14], will be influenced by
Equation 1 through changes in the expected net monetary benefit
that are now dependent on uptake and experience curves as well
as the technology life horizon adopted.

NB¼λ
XTTj

t¼1

ejðtÞδ�
XTTj

t¼1

cj PNt

� �
δ, ð5Þ
where NB is the net monetary benefit and λ is the willingness-to-
pay threshold with λ40.

The EVPI is then:

EVPI¼EθmaxjNB j,θ
� ��maxjEθNBðj,θÞ, ð6Þ

where NBðj,θÞ is the expected net monetary benefit of technology j
given the uncertain model input parameters θ.

Furthermore, the value of the EVPI accrued over the affected
patient population is commonly used to compare the value of
further research with its costs. This value is also affected by our
dynamic analysis, when a technology is not fully implemented
instantly. The number of patients affected then needs to be
adjusted by uptake [15,16]. This is usually not done: most VOI
studies reporting the EVPI for the population use an estimate of
the disease incidence or eligible patient population as the
population estimate without adjusting for uptake [15,17]. If we
have knowledge of diffusion, we are able to calculate the
diffusion-adjusted population EVPI (PEVPI) by adjusting the pop-
ulation estimate by time-dependent uptake:

Diffusion�Adjusted PEVPI¼EVPI�
XTVOI

t

njt

Mn
δπ, ð7Þ

where njt is the uptake of the recommended technology j in
period t as a proportion of the desirable number of adoptions Mn,
δπ is the discounted affected patient population, and TVOI is the
VOI time horizon.
Application in Illustrative Example

We illustrate future price changes through the experience curve
using an illustrative example on a technology in development for
preterm birth screening. A new screening technology (T1) is
evaluated against no screening (T0). When tested positive, high-
risk women will be treated, which leads to a reduction in the
number of women with premature births. There are three health
outcomes associated with the duration of gestation: full health,
life-long disability, and death of the baby. These health states are
associated with utilities measured in QALYs, and the health
states as well as preterm birth itself and potential hospital
treatments for mother and baby have costs linked to them.

We created a simple decision tree model that yields the ICER
for one period. It is worth noting that in this case study, because
screening and treatment happen within 1 year, a period coincides
with one cohort. In some other technologies, such as drugs, this
may not be the case, and for those, costs and effects for all
prevalent cohorts that use the technology have to be summed up
for each period. The model was populated with data from
previous cost-effectiveness analyses [18,19] and ongoing studies
on technology T1 as well as some simplifying assumptions. An
extra step of modeling uptake for each period of time and the
associated price for the same period according to Equations 1 and
2 is necessary. We simulated a number of future periods up to the
chosen technology life horizon and included the price changes
from the previous step into the calculation of the new cost for
each period. To represent decision uncertainty, a probabilistic
sensitivity analysis (PSA) with 1,000 iterations was performed and
the EVPI and the PEVPI were calculated (with a population of
26,000 women screened per annum) using a threshold of £30,000
per QALY. We performed partial EVPI analyses using a general-
ized additive model regression method [20] to present decision
uncertainty contributed by the technology life horizon, the
uptake, and the experience curve parameters.

Parameterizing the experience curve requires both data on the
experience curve parameters and data on the diffusion parame-
ters. We obtained diffusion estimates for the new technology T1
by performing an elicitation of expert beliefs about parameters



Fig. 2 – Impact of experience curve parameterization
on price.

V A L U E I N H E A L T H 1 9 ( 2 0 1 6 ) 7 2 0 – 7 2 6 723
that informed the Bass model of technology growth. Beliefs
elicited from three experts were synthesized using linear pooling.
The method required the elicitation of only three uncertain
quantities to generate a multiperiod diffusion curve, including
the total attainable number of adoptions, the number of adop-
tions in the first period after technology introduction, and the
time to the peak number of per-period adoptions. From these, the
Bass model parameters were approximated by an optimization
procedure within Excel, which enabled us to generate the dif-
fusion curve for technology T1. In the absence of a manufac-
turer’s forecast, the estimate for the initial production quantity
was based on the elicited number of adoptions for the first period
with an additional 50% added to it (10 devices adopted in the first
year). Alternatively, a wealth of literature has shown the fit of the
Bass model with real-world diffusion data across industries, with
meta-analyses of the main parameters p and q available [21] that
may be useful to inform decision models in health. With respect
to data on specific health technologies, studies by Gobok et al.
[22] and Sillup [23] have demonstrated the value of the Bass
model in prospective and retrospective analyses of different
technologies including neurological monitoring with biomarkers,
computed tomography scans, magnetic resonance imaging, and
others with parameter values available from these reports. We
suggest basing the experience curve alpha parameter estimate on
the basis of the range reported in the empirical study by Brown
et al. [7] (we use α ¼ 90%), or perform expert elicitation on this.
We explored the effects of different values for diffusion param-
eters on the shape of the diffusion curve and of the experience
curve parameters on the format of price changes.
Results

The price of the new screening technology T1 declines after
approximately 15% of the attainable uptake has been achieved
after 2 years (Fig. 1). The short time in which the price remains
stable and the subsequent rather quick price decline are con-
sequences of the parameter values that cause the initial produc-
tion run of the device to end at the same time as uptake increases
exponentially. With uptake exhibiting diminishing marginal
growth toward the later periods, price converges to an asymptote.
More intuitively, when uptake growth becomes slower, the
reduction in technology price decreases until the lowest possible
level of price is reached. Using different values for the experience
curve and diffusion parameters shows that both have a signifi-
cant effect on technology price (Fig. 2). For instance, given that all
else remains equal, an experience curve parameter (α in
Equation 1) of 80% could reduce future price to less than half of
its starting value once 140 adoptions are reached, which in the
Fig. 1 – Diffusion and price developments of technology T1.
case study example is at approximately 10 years. An α of 95%, in
contrast, would reduce the future price to just more than 80% of
its starting value. The effect of different values for diffusion
parameters p and q is shown in Figure 3: we used the minimum,
maximum, and mean values that resulted from 1000 simulations
inverting the elicited quantities to yield parameters p and q, and
plotted resulting diffusion curves for parameter p in Figure 3A,
holding parameter q constant, and for parameter q in Figure 3B,
holding parameter p constant. Both parameters could signifi-
cantly change the speed of diffusion, which would result in price
changes occurring faster or more slowly.

The average dynamic ICER is shown to be lower than the
commonly used static ICER (Fig. 4). This is explained by uptake
and price changes affecting costs associated with technology T1
in such a way that they decline over time, resulting in decreasing
per-period dynamic ICERs in each future period modeled. The
technology life horizon chosen crucially determines how much
lower the dynamic ICER is compared with the static ICER (Fig. 4).
Modeling more future periods would increase the number of
Fig. 3 – Impact of diffusion curve parameters on diffusion.



Fig. 4 – Impact of technology life horizon on dynamic ICER.
ICER, incremental cost-effectiveness ratio; QALY, quality-
adjusted life-year.
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periods with a low ICER and thus lower the average dynamic ICER
further. Choosing a shorter technology life horizon may mean
that price changes have not been realized and that the average
dynamic ICER remains closer to the static ICER. This negative
relationship between the average dynamic ICER and the technol-
ogy life horizon exhibits diminishing marginal returns, which is
explained by the per-period dynamic ICER decreasing with
diminishing marginal returns (Fig. 4).

Adding experience curve and diffusion parameters to the
model increases the expected opportunity loss associated with
decision uncertainty, as calculated by the EVPI (£175 per person
in the dynamic analysis vs. £112 in the static analysis). The
uncertainty associated with the added parameters relating to
uptake, the experience curve, and the time horizon has an effect
on model outcomes and there is value associated with a reduc-
tion in uncertainty, with expected values of partial perfect
information (EVPPI) of £7.5, £0.01, and £0.06, respectively.
Together, the diffusion and experience curve parameters have a
grouped EVPPI of £11 and the diffusion and technology life
horizon parameters have a grouped EVPPI of £11.5. The main
contributors to decision uncertainty in this example are the
parameters describing the predictive ability of technology T1
(i.e., the sensitivity and specificity parameters).

We show that the diffusion-adjusted PEVPI is smaller than the
unadjusted PEVPI (Fig. 5). This relationship has to hold as long as
uptake of the recommended technology is less than 100%. There
is a decrease in the unadjusted PEVPI with the VOI time horizon
that exhibits diminishing marginal returns, explained by the
effect of discounting (Fig. 5). The diffusion-adjusted PEVPI shows
a more ambiguous relationship with time. The low initial values
Fig. 5 – Comparison of diffusion-adjusted and common
PEVPI. PEVPI, population expected value of perfect
information; VOI, value of information.
for the diffusion-adjusted PEVPI are explained by the low values
for uptake in the first few periods. The subsequent increase is a
consequence of rapidly growing uptake that offsets the negative
effect of discounting. When uptake reaches its maximum, the
diffusion-adjusted PEVPI decreases. Finally, it is noteworthy that
the difference between the two estimation methods for the PEVPI
becomes smaller over time, suggesting that we might make a
bigger mistake when the VOI time horizon is short than when it
is longer.
Discussion

We have shown that future changes in price and uptake affecting
medical devices and a varying time horizon for modeling future
periods significantly affect cost-effectiveness and EVPI results in
an illustrative example. Technology T1 became more cost-
effective when future periods and price declines with time and
uptake were modeled. PEVPI results were dependent on uptake,
and results of the partial EVPI analysis implied that there was
value in reducing uncertainty surrounding future change param-
eters in this example.

These results are in line with the findings by Hoyle [3] that
taking into account future price changes of drugs could reduce
ICERs by up to 46% in the author’s case studies. These findings
call into question the commonly made assumption of the first
cohort being representative of future periods until re-appraisal is
undertaken, and the common disregard for changes that are
precipitated by the reimbursement decision itself. The proposed
model is especially useful in technologies that may be rejected
at the common cost-effectiveness threshold but that may exhibit
a decline in price with increasing uptake, because cost-
effectiveness could potentially fall below the threshold. In such
a setting, our framework improves analytic accuracy by explicitly
modeling future price changes and therefore enables decision
makers to transparently use the resulting outcomes in decision
making. Furthermore, decision makers may want to consider the
value of implementation measures to boost uptake and increase
the value of the technology to the health system. The experience
curve modeling approach could be presented as a scenario
analysis in a submission, given that more evidence on these
price changes is desirable. If used in the base case, it is important
to reflect uncertainty about the experience curve and diffusion
parameters. In technologies for which price does not represent a
substantial part of its cost to the health care system, our
approach may not affect model outcomes considerably.

The framework described in this article ignores some of the
operational details related to its use because these will be specific
to individual reimbursement systems. It should, however, be
noted that some of the uncertainties included in our analysis
can be reduced or potentially eliminated by reimbursement
bodies. For example, the Technology Appraisals of the National
Institute for Health and Care Excellence are usually scheduled to
be reviewed every 5 years. Over this time frame, any price
changes due to volume changes may be small and the value of
these further analyses limited. Likewise, reimbursement bodies
may want to consider reducing the uncertainty around price
changes by making reimbursement contingent on the establish-
ment of price and volume contracts.

It is important to recognize that when modeling future
cohorts there is a trade-off of present against future welfare.
We assumed that discounted future welfare gains of one tech-
nology could offset larger present welfare gains of another
technology. The key problem with this is the uncertainty sur-
rounding future events. Price changes might never materialize or
another more cost-effective technology could become available.
Careful consideration of competitor technologies to be launched



V A L U E I N H E A L T H 1 9 ( 2 0 1 6 ) 7 2 0 – 7 2 6 725
in the following years is therefore advisable, as was highlighted
previously in the context of causes for declining sales volumes in
drugs [3]. As for the uncertainty surrounding future price
changes, we advise treating the price change parameter as any
other uncertain parameter including uncertainty.

The strength of this research relates to the use of price
changes via experience curve and diffusion theory in health
economic modeling. We are not aware of any other study
incorporating experience curves into cost-effectiveness and VOI
analyses. Hoyle [3] investigated the effect of declining real drug
prices on the ICER and developed a life cycle correction factor to
take these into account. Incorporation of these price changes into
a cost-effectiveness analysis that supports a reimbursement
process is questionable. If the price changes are independent of
the decision, they need not be included; re-appraisal at the
appropriate time point would be an alternative approach.

Another strength of the research is that we explored the
effects of uncertainty surrounding the time horizon parameter.
The choice of a technology-specific time horizon was shown to be
crucial for the value of the dynamic ICER. There is differing
literature on the appropriate time horizon. Hoyle [2] estimated
the mean drug lifetime to be 57 years (95% confidence interval;
39–79 years) and used this as a proxy to a time horizon. In
contrast, medical devices seem to have much shorter lifespans,
estimated as short as 18 months [24]. Although the International
Society for Pharmacoeconomics and Outcomes Research Good
Research Practices Task Force [25] recommends a time horizon
long enough to capture all relevant outcomes that may result in a
lifetime horizon, the interpretation of this refers to the within-
cohort time horizon rather than to the number of periods that
should be modeled in the future for separate cohorts. No matter
what time horizon is chosen, it is appropriate to include this
within the PSA because of uncertainty over its estimates.

Some limitations of this approach to modeling future price
changes relate to the added complexity and data requirements.
The two-stage approach of modeling future uptake and price
change increases computational time and data requirements. For
diffusion and price change parameters, we recommend the use of
data from meta-analyses or analogous technologies for simplic-
ity, but alternatively and for more context-specific estimates,
data gaps can be filled using an elicitation of expert opinion. This
may improve the accuracy of the estimates but PSA would still be
recommended on uncertain parameters. When a longer technol-
ogy life horizon is adopted, it may be worth considering changes
in discount rates. The complexity of data requirements will also
increase if the dynamics of the comparator technologies are
considered. This would suggest that a modified elicitation task
will be required to estimate the uptake of the comparators.

We see potential in conducting further research to explore
whether experience curves hold in an increased number of
medical devices and whether experience curves also apply to
pharmaceuticals and to further establish ways of obtaining data
on uptake and price change. Furthermore, the addition of expe-
rience curves has established a more complex link between
implementation and VOI analysis via price changes, which could
further be explored in value of implementation and information
analysis studies [26–28].
Conclusions

We argue that future price reductions need to be incorporated
through modeling future periods in cost-effectiveness analysis
when these changes are precipitated by the reimbursement
decision, as is the case with experience curves in medical
devices. Modeling future cohorts in the presence of changes in
price that are dependent on uptake has the potential to alter HTA
outcomes and modeling techniques that address such issues
should be used in technologies for which such future change is
relevant and that may be rejected otherwise.
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