Budget Impact of Elranatamab in Patients With Relapsed or **Refractory Multiple** Myeloma (RRMM) in the **United States**

Objectives

Elranatamab is a bispecific antibody indicated for the treatment of adult patients with RRMM who have received ≥ 4 prior lines of therapy including, a proteasome inhibitor (PI), an immunomodulatory agent (IMiD), and an anti-CD38 monoclonal antibody (mAb). Understanding the budget impact of introducing elranatamab in this population is of key interest to US payers. This research estimated the budget impact of introducing elranatamab in US commercial and Medicare health plan settings

Conclusions

Treatment with elranatamab in patients with RRMM is estimated to result in a minimal to small budget impact over a 3-year period, partly explained by a small eligible patient population

Electronic Poster

Please scan this Quick Response (QR) code with your smartphone app to view this poster. If you do not have a smartphone, access the poster via the internet at: https://scientificpubs.congressposter.com/p/ky4z91r7ps6ql927

References: 1. Kazandjian D. Semin Oncol 2016;43:676-681. 2. Padala SA, et al. Med Sci (Basel). 2021;9:3. 3. Raje N, et al. Blood Cancer J. 2023;13:41. 4. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK592405/. 5. Institute for Clinical And Economic Review. Accessed December 1, 2023. https://icer.org/wp-content/uploads/2020/10/ICER_Multiple-Myeloma_Final-Report_Unredacted_112222.pdf. 6. Kumar SK, et al. Multiple myeloma, version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2023;21:1281-1301. **7.** Mikhael J. Clin Lymphoma Myeloma Leuk 2020;20:1-7. **8.** Gandhi UH, et al. Leukemia 2019;33:2266-2275. **9.** Stalker ME, et al. Curr Oncol 2022;29:4464-4477. **10.** Martínez-Lopez J, et

al. Future Oncol 2023;19:2103-2121. **11.** Lesokhin AM, et al. Nat Med 2023;29: 2259-2267. **12.** Bal S, et al. Leukemia 2022;36:877-880. **13.** Surveillance, Epidemiology, and End Results Program. Cancer stat facts: myeloma. Accessed April 15, 2024.

https://seer.concer.gov/statfacts/html/mulmy.html. 14. Nikolaou A, et al. Value Health 2022;25:1977-1985. **15.** Munshi NC, et al. N Engl J Med. 2021;384:705-716. **16.** Martin T, et al. J Clin Oncol 2023;41:1265-1274. **17.** Chari A, et al. N Engl J Med 2019;381:727-738. **18.** Einsele H, et al. Hemasphere 2023;7(suppl):e5183528. Abstract P923. **19.** Sidana S, et al. Hemasphere. 2023;7(suppl):e62475d0. Abstract P879. **20.** Anderson JLD, et al. Clin Lymphoma Myeloma Leuk 2021;21(suppl 2):S17-S18. Abstract OAB-027. **21.** Micromedex. Accessed December 1, 2023. https://www.micromedexsolutions.com. 22. Centers for Medicare & Medicaid Services. Physician Fee Schedule. Accessed January 31, 2024. https://www.cms.gov/medicare/payment/feeschedules/physician.

Acknowledgments: This study was sponsored by Pfizer. Editorial support was provided by Kerry Garza, PhD, of Nucleus Global and funded by Pfizer.

Disclosures: BS has participated on advisory boards for Pfizer. **YL and YH** have received research funding from Pfizer. **RS, AS, DH, JH, and PH** are employed by and hold stock options at Pfizer. **Contact:** Bhavesh Shah, bhavesh.shah@bmc.org

Copyright ©2024. All rights reserved.

¹ Boston Medical Center, Boston, MA, USA; ² Pfizer AB, Stockholm, Sweden; ³ Cytel, Rotterdam, the Netherlands; ⁴ Pfizer Inc, New York, NY, USA

Background

- MM is an incurable hematologic malignancy characterized by the monoclonal proliferation of plasma cells in the bone marrow.¹ It is the second most common hematologic malignancy in the US²
- Most patients with MM eventually experience relapse and/or refractory disease (ie, RRMM).^{3,4} Survival decreases with each line of therapy; after 3-4 prior lines, median survival is 9.2 months and 5.6 months after 5 prior lines of usual care⁵
- No standard of care (SOC) currently exists for patients with RRMM who have received multiple prior lines of therapy including a PI, an IMiD and an anti-CD38 mAb (ie, triple-class exposed patients with MM [TCEMM]).⁵ The National Comprehensive Cancer Network (NCCN) guidelines recommend chimeric antigen T-cell (CAR-T) therapies (eg, ciltacabtagene autoleucel [cilta-cel], idecabtagene vicleucel [ide-cel]), bispecific antibodies (eg, teclistamab, talquetamab), or selinexor and dexamethasone.⁶ In real-world practice, a larger share of patients with RRMM received combinations of agents that include reused PIs or iMiDs, such as carfilzomib, ixazomib, and pomalidomide⁷⁻⁹
- Although patients with RRMM represent a relatively small group, the cost per patient is high, and the economic burden of this group is still substantial, particularly among patients with multiple prior treatment lines¹⁰
- Elranatamab is a novel bispecific antibody that binds B-cell maturation antigen on myeloma cells and CD3 on the surface of T cells. In MagnetisMM-3 (NCT04649359), a phase 2, open-label, multicenter, non-randomized clinical trial, elranatamab demonstrated clinical efficacy in terms of objective response rate, duration of response, and progression-free survival (PFS) in TCE/refractory patients with MM¹¹

Eligible population

The eligible populations from commercial and Medicare perspectives in a hypothetical plan of 1 million members were estimated to be 14 and 60 patients per year, respectively (**Figure 1**)

5L=fifth line; EOL=end of life; MM=multiple myeloma; MRU=medical resource use; TCEMM=triple-class exposed patients with multiple myeloma

Table 1. Market shares of primary treatments												
	Statu (witho	is quo sce out elranat	nario amab)	Reimbursement scenario (with elranatamab)								
	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3						
Elranatamab	0%	0%	0%	6%	12%	18%						
Talquetamab	10%	12%	15%	9%	12%	14%						
Selinexor + dexamethasone	19%	18%	17%	19%	17%	15%						
lde-cel	5%	5%	5%	5%	5%	5%						
Cilta-cel	5%	5%	5%	5%	5%	5%						
Teclistamab	18%	23%	27%	17%	21%	26%						
РСТ	43%	37%	31%	39%	28%	17%						
cilta-cel=ciltacabtagene autoleucel; ide-ce	el=idecabtagen	ne vicleucel; P	CT=physiciar	n choice of tre	eatment							

Bhavesh Shah,¹ Rickard Sandin,² Yun Liu,³ Yannan Hu,³ Alexander Schepart,⁴ David Hughes,⁴ Jim Hart,⁴ Patrick Hlavacek⁴

Methods

- over a 3-year period (**Figure 1**)
- were estimated based on market research and clinician opinions (**Table 1**)
- databases,^{21,22} and published literature
- sensitivity analyses (OWSA) assessed uncertainty around model parameters

Results

- From a commercial perspective, the addition of elranatamab was associated with a cost increase of \$46,926 in year 1 to \$288,018 in year 3, resulting in a total cost increase of \$514,104, PMPM cost of \$0.043, and PPPM cost equal to \$3027 over 3 years (Table 2)
- \$2,183,722, PMPM of \$0.181, and PPPM cost equal to \$3027 (Table 2)
- From both commercial and Medicare perspectives, primary drug costs accounted for the largest share of total costs followed by subsequent treatment costs and AE management costs. Adding elranatamab increased primary drug costs, while reducing subsequent treatment costs (Table 2)
- From both commercial and Medicare perspectives, OWSA identified the main drivers of the budget impact to be the drug cost per pack of elranatamab, the relative dose intensity of elranatamab, the market shares of PCT, and the mean treatment duration of elranatamab (Figure 2). For the commercial perspective, the population percentage aged ≤64 years was found to be an additional main driver of the budget (Figure 2A)

		Commercial				Medicare			
	Year 1	Year 2	Year 3	Total	Year 1	Year 2	Year 3	Total	
Market without elranatamab (status quo scenario) , \$								
Primary drug and administration	3,297,100	3,712,185	4,110,641	11,119,926	14,004,847	15,767,976	17,460,465	47,233,288	
Hospitalization during step-up dosing	145,871	182,978	220,342	549,191	619,608	777,220	935,929	2,332,757	
AE costs for primary treatment	436,037	466,376	496,923	1,399,336	1,852,121	1,980,992	2,110,743	5,943,856	
Monitoring and other MRU ^a	71,231	79,112	87,578	237,921	302,561	336,038	371,998	1,010,597	
Subsequent treatment drug & administration	928,914	977,422	1,298,230	3,204,566	3,945,678	4,151,725	5,514,396	13,611,79	
End-of-life costs	139,752	124,407	161,248	425,407	593,614	528,436	684,921	1,806,971	
Total	5,018,905	5,542,480	6,374,962	16,936,347	21,318,429	23,542,387	27,078,452	71,939,268	
Market with elranatamab (reimbursement scenar	io), \$				·				
Primary drug & administration	3,392,495	4,009,277	4,612,696	12,014,468	14,410,052	17,029,911	19,593,009	51,032,972	
Hospitalization during step-up dosing	151,507	204,743	258,350	614,600	643,544	869,672	1,097,376	2,610,592	
AE costs for primary treatment	454,678	510,225	566,155	1,531,058	1,931,300	2,167,244	2,404,815	6,503,359	
Monitoring and other MRU ^a	71,280	79,947	90,294	241,521	302,772	339,587	383,537	1,025,896	
Subsequent treatment drug and administration	865,135	815,660	1,013,483	2,694,278	3,674,772	3,464,618	4,304,899	11,444,289	
End-of-life costs	130,736	101,788	122,000	354,524	555,316	432,357	518,210	1,505,883	
Total	5,065,831	5,721,640	6,662,978	17,450,449	21,517,756	24,303,389	28,301,845	74,122,990	
Incremental budget impact, \$									
Total incremental cost per year	46,926	179,160	288,018	514,104	199,327	761,001	1,223,394	2,183,722	
PMPM	0.004	0.015	0.024	0.043	0.017	0.063	0.101	0.181	
PPPM	278	1,056	1,693	3,027	278	1,056	1,693	3,027	

"Other MRO includes inpatient/outpatient visits, physician onice visits, 1-time leukapheresis (only for CAR-1 therapies) (le, the remaining MRO except hospitalization during step-up dosing). AE=adverse event; CAR-T=chimeric antigen T-cell; MRU=medical resource utilization; PMPM=per member per month; PPPM=per treated patient per month

• A budget impact model (BIM) was developed to estimate the budget impact of treating TCEMM in the fifth line or later in a setting without elranatamab (status quo scenario) and with elranatamab (reimbursement scenario) in hypothetical 1-million-member commercial and Medicare health insurance plans, respectively,

• The treatments considered in this model included elranatamab, talquetamab, selinexor plus dexamethasone, ide-cel, cilta-cel, and teclistamab. Since there is currently no SOC for TCEMM in the US, a physician choice of treatment (PCT) basket was derived from a real-world US study.^{8,12} The market shares for the 2 scenarios

• Epidemiology data were obtained from the SEER database¹³ and a large US real-world study.¹⁴ Key clinical inputs included time to treatment discontinuation (TTD), PFS, overall survival, grade 3/4 adverse events (AEs), and all-grade cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS). Cost associated with drug acquisition (primary and subsequent treatments), administration, monitoring (biochemistry and complete blood count), medical resources use (eg, hospitalization, physician visits), and AEs were incorporated. Model inputs were sourced from clinical trial data,¹⁵⁻²⁰ US government

• Total budget impact, per member per month (PMPM), and per treated patient per month (PPPM) in 1-million hypothetical population of commercial and Medicare health insurance plans were assessed. One-way

• Similar trends in the total cost per year were found in the analyses from a Medicare perspective, resulting in a total cost increase of