Economic Burden and Healthcare Resource Utilization in Patients with Psoriatic Arthritis (PsA): A systematic literature review

Stefan Varga, Satnam Walia, Carla Zema, Divya Pushkarna, Stephanie Dahan, Mir Sohail Fazeli, Jiyoon Choi, Joseph F. Merola ¹Bristol Myers Squibb, Princeton, NJ, USA, ²Evidinno Outcomes Research Inc,. Vancouver, BC, Canada, ³UT Southwestern Medical Center, Dallas, TX, USA

Background

- PsA is a chronic inflammatory musculoskeletal disease associated with psoriasis and has a heterogeneous disease presentation including peripheral arthritis, enthesitis, dactylitis, spondylitis, and nail lesions.1
- The prevalence of diagnosed PsA ranges from 0.1% to 1.0% in the global population, with undiagnosed cases estimated at 10.1%. Furthermore, 19.7% of individuals with psoriasis are affected by PsA, according to recent epidemiological studies.^{2,3,4}
- mortality compared to the general population. This increased risk is potentially due to the high overall burden of comorbidities associated with PsA.⁵
- Due to its chronic nature and associated comorbidities, PsA is associated with substantial healthcare costs and healthcare resource use, which increases with disease severity and progression.⁵
- Hence, there is a necessity to understand the economic implications of PsA to facilitate identification of patients and development of enhanced management strategies for this condition.

Objectives

• To conduct a systematic literature review (SLR) aiming to evaluate and comprehend the current economic burden and healthcare resource utilization (HCRU) among PsA patients.

Methods

- An SLR was conducted by searching MEDLINE®, Embase, NHS Economic Evaluation Database (NHS EED), and EconLit databases from inception to August 11, 2022. Studies were identified using a predefined PICO criterion. Review and data extraction were performed by two independent investigators. Results were reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.⁶
- Grey literature (materials and research produced by organizations outside of the traditional commercial or academic publishing [e.g., MEDLINE®/PubMed and distribution channels) searches were conducted by searching Embase (via OvidSP) to identify abstracts from the relevant conference proceedings from the past two (2020-2022) years.
- Inclusion was based on the following PICOS criteria:
- Population: Adults with psoriatic arthritis.
- -Interventions: Any or none.
- -<u>Comparators</u>: Any or none.
- -Outcomes: Direct costs, Indirect costs & Healthcare resource utilization.
- -Study design: Observational studies (Cohort studies, case-control, crosssectional studies).
- Data extraction and quality assessment (using the NICE single technology appraisal (STA) template developed for economic evaluations tool)⁷ of the included studies were undertaken by two independent reviewers. Any discrepancies were resolved by a third investigator.

Results

Study selection and characteristics

- A total of 2,872 abstracts were identified through the SLR. Of these, 1,777 were found through Embase, 1,080 through MEDLINE®, 10 through NHS EED, and 5 through EconLit.
- -After screening 161 articles, 86 publications (84 studies) were included for qualitative synthesis.
- Of the 84 primary studies, 66 were retrospective cohort studies, 12 were crosssectional studies, and 6 were prospective cohort studies.
- Most of the studies (n = 47) were conducted in North America, followed by Europe (n = 28), Asia (n = 4), multi-country studies involving North America and Europe (n = 4), and South America (n = 1).
- Majority of the studies (n = 46) were carried out in the US, followed by Germany (n = 7) and other countries (n = 31).
- -Sixty-two studies reported the costs from a payer perspective; whereas 22 studies reported costs from a societal perspective.
- -Sample size was reported by 79 studies ranging from 338 to 35,0619
- Fifty-six studies reported mean age of participants which ranged from 41.6 years¹⁰ to 60.8 years. 11
- The percentage of female participants was reported across 64 studies which ranged from 6.6%¹² to 72.3%.¹³

Results

- The racial background of the participants was documented in 8 studies. Most participants recruited across these studies were Whites/Caucasians (range: 66.4¹⁴ - 96¹⁵), followed by Hispanics (range: 4.9^{16} - 10.4^{14}), Others (range: 0.6^{16} - 12.5^{14}), Blacks (range: 0.5^{15} - 8.8^{17}) and Asians (range: 1.4¹⁶ - 4.1¹⁴).
- The most commonly reported treatments for this condition included topical, oral, and systemic corticosteroids, DMARDs, painkillers, and phototherapy.
- A US-based study pointed out that individuals with PsA may have a higher risk of The evidence base for the SLR was stratified into three stratas: direct costs, indirect costs, and healthcare resource utilization. Among the 84 primary studies included, 59 studies reported direct costs, 30 studies reported indirect costs and 31 studies reported HCRU. Some of the studies reported overlapping evidence.

Direct costs

-Of the studies that provided evidence on direct costs, 35 studies reported total direct costs, 21 studies reported inpatient costs, 30 studies reported outpatient costs and 51 studies reported other costs (emergency department costs and pharmacy costs). The evidence was overlapping among the studies.

-Among the studies reporting total direct costs, eight studies in the US and seven studies in European countries provided the mean total direct costs associated with PsA per patient per year (pppy), as shown in **Table 1**.

- Among the studies providing data for direct inpatient costs, US-based studies reported mean pppy inpatient costs ranging from \$28 pppy¹³ in the 4th year of follow-up for PsA patients to \$40,704 pppy¹⁵ for patients receiving apremilast.

Outpatient costs in US-based studies varied from \$1,131 pppy in the index period to \$17,421 pppy in the post-index period (the index date was defined as the first PsA diagnosis date).¹⁷ Additionally, for the studies reporting data in Euro (€) the mean outpatient costs varied from €1.7 pppy¹⁸ in the first year to €1,074 pppy¹⁹ over the period of 10 years.

Table 1: Mean total direct cost per patient per year (pppy) across the included studies.

Author & year (Country)	Sample size	Observation period	Mean Cost	
		US		
eldman 2015 ⁸ (US)	1,230	1 year	\$27,123	
	677	NR	Etanercept: \$2,052	
onafede 2017 ²⁰ (US)	119	NR	Ustekinumab: \$4,312	
eldman 2019 ¹⁵ (US)	381	1 year	Apremilast: \$44,277	
	761	1 year	Biologic: \$54,443	
	471	1 year	Apremilast: \$39,854	
aplan 2021 ²¹ (US)	804	1 year	TNFi: \$57,243	
•	86	1 year	iLi: \$65,867	
	21,428	NR	\$29,742	
	21,428	1 year	\$28,104	
ovolo 202414 (UC)	21,428	2 years	\$29,077	
erola 2021 ¹⁴ (US)	21,428	3 years	\$30,317	
	21,428	4 years	\$33,921	
	21,428	5 years	\$34,463	
	3,584	1 year	\$21,992	
	2,931	2 years	\$21,978	
rince 2021 ¹³ (US)	2,387	3 years	\$22,869	
	1,687	4 years	\$21,581	
	1,135	5 years	\$21,642	
laine Husni 2022 ²² (US)	534	NR	Apremilast: \$17,871	
	1,852	NR	Methotrexate: \$10,683	
	EU co	ountries		
odszky 2009 ²³ (Hungary)	183	1 year	€5,574	
ifetaki 2015 ¹⁸ (Greece)	92	NR	€8,097	
ristensen 2017 ¹⁹ (Denmark)	10,525	10 years	€4,336	
	NR	1 year	csDMARD: €1,966.4	
sposti 2019 ²⁴ (Italy)	NR	1 year	bDMARD: €13,914	
ars 2019 ²⁵ (Finland)	213	1 year	€3,816	
artinez-Lopez-de-Castro	100	1 year	Anti-TNF-alpha: €12,075	
020 ²⁶ (Spain)	100	1 year	Non-anti-TNF-alpha: €16,255	
· - /	749	1 year	Adalimumab: €12,115.20	
	55	1 year	Certolizumab: €9,726.90	
	661	1 year	Etanercept: €10,888.10	
errone 2020 ²⁷ (Italy)	149	1 year	Golimumab: €12,191.90	
	130	1 year	Infliximab: €10,177.50	
	104	1 year	Ustekinumab: €14,993.70	

EU: European countries; ILi: Interleukin inhibitor; NR: Not reported; PPPY: Per patient per year; US, United States; TNFi: Tumor necrosis factor inhibitor

In terms of other costs, the emergency department costs observed across studies conducted in the US exhibited a range from \$41 pppy¹² for individuals receiving non-TNFi biologics to \$1,292 pppy for discontinuers of biologics.¹¹ Concurrently, pharmacy expenses across these US studies showed variability, spanning from \$1,435 pppy¹⁶ for patients undergoing apremilast treatment over 18 months to \$57,038 pppy²¹ for those receiving interleukin inhibitor (ILi) therapy.

Indirect costs

-Evidence regarding indirect costs was provided by 30 studies. Among these, six studies presented data consisting of total indirect costs, while 10 studies detailed indirect costs linked to sick leaves. Additionally, five studies examined costs associated with disability, and productivity limitations were discussed by 17 studies utilizing the WPAI scale (Work Productivity and Activity Impairment), with one study employing the WLQ (Work Limitation Questionnaire).

The aggregate data on indirect costs were provided by five distinct studies, each originating from Germany, Hungary, Poland, Italy, and Norway, respectively. These studies exhibited a broad temporal scope, spanning from baseline assessments to a duration of five years, as presented in **Table 2**.

Table 2. Mean indirect total costs and costs associated with sick leaves and disability across included studies.

Author & Voor (Country)	Sample	Observation	Cost
Author & Year (Country)	size	period	Cost
	Indirect t	otal costs (PPP)	()
Huscher 2006 ²⁸ (Germany)	908	NR	HCA: €11,075
	908	NR	FCA: €5,570
Brodszky 2009 ²³ (Hungary)	183	1 year	€2,904
Kvamme 2012 ²⁹ (Norway)	311	0-6 months	SD: €17,347#
	311	6-12 months	SD: €16,404#
	311	12-24 months	SD: €15,382#
	63	0-6 months	BD: €32,079#
	63	6-12 months	BD: €25,665#
	63	12-24 months	BD: €26,712#
Kawalec 2016 ³⁰ (Poland)	50	1 year	€318.0#
	107	Baseline	€133.4 [®]
Olivieri 2016 ³¹ (Italy)	52	1 year	€33.7®
	55	5 years	€11.6®
Indirect co	st associa	ted with sick le	eaves (PPPY)
Huscher 2006 ²⁸ (Germany)	908	NR	€1,374
Brodszky 2009 ²³ (Hungary)	183	1 year	€161
Zhu 2010 ³² (Hong Kong)	63	NR	\$1,039#
Kristensen 2017 ¹⁹ (Denmark)	10,525	10 years	€790
Orbai 2021 ³³ (US)	33,570	1 year	\$26.7
- 1 000 134 (0	348	Pre-Index	€649#
Sewerin 2021 ³⁴ (Germany)	348	Post-Index	€303#
Indirect co	ost associ	ated with Disab	vility (PPPY)
Huscher 2006 ²⁸ (Germany)	908	NR	€6,545*
	908	NR	€1,040^
Brodszky 2009 ²³ (Hungary)	183	1	€2,742
Orbai 2020 ³⁵ (US)	6,240	1	\$654
Husni 2021 ³⁶ (US)	1,244	1	\$896.5#
(00)	4,096	1	\$725
	4,096	2	\$503
Orbai 2021 ³³ (US)	4,096	3	\$442
• •	4,096	4	\$710
	4,096	5	\$590

BD: Biological DMARDs; FCA: Friction Cost Approach; HCA: Human Capital Approach; Index date: The first observed bDMARD prescription (i.e. per month: @; PY: Person year; SD: Synthetic DMARDs; US, United States;*: Calculated using the human capital approach by the author; ^ Calculated using the friction costs approach by the author

The indirect costs linked to sick leaves attributed to PsA were documented in two studies conducted in Germany, with one study each originating from Hungary, Denmark, Hong Kong, and the US. The German-based study reported an indirect cost of €649 per patient (pp) pre-index and €303 pp post-index, wherein the index date was defined as the initial observed dispensing date.³⁴ The indirect costs are summarized in Table 2.

-In terms of indirect costs due to disability arising from psoriatic arthritis, notable reporting predominance was observed across three studies conducted in the US, followed by one study each presenting data from Germany and Hungary. Among these, one US-based study sourced data from the IBM MarketScan Commercial and Health and Productivity Management Database, providing insights into the average indirect costs associated with short-term disability leave pppy.³³ The data have been presented in Table 2.

Healthcare resource utilization (HCRU)

- Thirty-one studies contributed to HCRU for PsA patients, among these, inpatient HCRU was reported by 23 studies, outpatient HCRU by 25 studies, emergency department HCRU by 10 studies, rheumatologist HCRU by seven studies, and dermatologist HCRU by five studies.
- -In studies reporting inpatient HCRU, the mean length of hospitalization stay for PsA patients ranged from 0.6 days pp⁹ to 11.1 days pp¹⁰ as presented in **Table 3**.

Table 3. Mean inpatient HCRU among PsA patients.

Author & Year (Country)	Sample size	Observation period	Length of hospital stay (days)
Zhu 2010 ³² (Hong Kong)	125	1 year	1.7*
Feldman 20158 (US)	1,230	1 month	1.1#
Merola 2018 ⁹ (US)	35,061	1 month	0.6*
Guraya 2020 ³⁷ (US)	77,980	NR	4.9#
Kim 2020 ¹⁰ (Korea)	NR	2012	9.1*
	NR	2016	11.1*
Murugesan 2021 ³⁸ (US)	50,700	2012	4.7
	179,400	2017	4.9

DPP: Days per person: *; DPS: Days per stay: #; US: United States

- The evidence pertaining to outpatient HCRU was reported by seven studies among which five studies reported mean outpatient visits as shown in **Table 4**.
- The median annual outpatient admissions ranged from 12.6 pppy³⁹ to 28.6 pppy.¹¹

-Additionally, the mean outpatient visits per patient per year among the included evidence ranged from 7 pppy¹⁰ to 19.3 pppy⁸ as shown above in **Table 4**.

-In terms of emergency department HCRU, the annual emergency department visits among PsA patients ranged from 0.3 pppy²⁶ to 1.8 pppy.⁵

-Adding to the evidence, the mean number of emergency department visits ranged from 0.4 pp^9 to 0.6 pp^{13} as reported in **Table 4**.

Table 4 Mean outpatient visits and mean emergency department visits among PsA nationts

Author & year (Country)	Sample size	Observation period	Visits
Number	of outpatient v	visits/ admissions (\	/PP)
Feldman 2015 ⁸ (US)	1,230	1 year	19.3#
Merola 2018 ⁹ (US)	35,061	1 year	18.6
Kim 2020 ¹⁰ (Korea)	NR	2012	7.1#
	NR	2016	7#
Prince 2021 ¹³ (US)	4,430	NR	45.3
Inui 2021 ³⁹ (Japan)*	639	1 year	12.6#
Hur 2021 ¹¹ (US)*	2,560	1 year	28.6#
Sewerin 2021 ³⁴ (Germany)	348	Pre-index	20.6
	348	Post-index	19.0
Em	ergency depart	ment visits (VPP)	
Zhu 2010 ³² (Hong Kong)	125	1 year	0.5#
Feldman 2015 ⁸ (US)	1,230	1 year	0.4#
Greenberg 2016 ⁵ (US)	10,832	1 year	1.8#
Merola 2018 ⁹ (US)	35,061	1 year	0.4
Martinez-Lopez-de-Castro 2020 ²⁶ (Spain)	100	1 year	0.3#
Prince 2021 ¹³ (US)	4,430	Baseline	0.6
Merola 2021 ¹⁴ (US)	21,428	1 year	1.2#

been reported as median value.

Conclusions

- •Overall, direct costs were the major cost drivers with inpatient costs and outpatient costs being the critical components. Indirect costs remained a silent contributor to the economic burden, highlighting the productivity limitations incurred due to PsA.
- •There is a lack of published data on the economic burden faced by caregivers and the costs associated with managing home care. The combined impact of inpatient costs, outpatient expenses and medication costs emphasizes the continuing need for focused interventions.

Acknowledgments

- This SLR was funded by Bristol Myers Squibb
- SV, SD and JC report employment with BMS. CZ is a contractor with BMS. SW, DP and MSF report employment with Evidinno. JFM is a consultant and/or investigator: AbbVie, Amgen, Biogen, Bristol Myers Squibb, Dermavant, Janssen, Leo Pharma, Lilly, Novartis, Pfizer, Regeneron, Sanofi, Sun Pharma, and UCB
- The references have been integrated into a supplementary document and is accessible online.