Performance assessment of a disease-agnostic treatment sequencing heuristic for deriving line of therapy (LOT) in a real-world, rare, multi-tumor cohort across tumor mutational burden (TMB) status

Scan for Abstract and **Digital Poster**

Lilia Bouzit¹, Mounika Burugupalli¹, Tamara Snow^{1,2}, Brendan Kerr¹, Neyha Shankar¹, Kevin Andrus¹, Anosheh Afghahi¹, Cheryl Cho-Phan¹ ¹ Flatiron Health, New York, NY; ² Now with Biograph, San Mateo, CA

Background

- A challenge in performing retrospective observational studies using treatment data is deriving clinically appropriate treatment sequences, especially when working across cancer types.
- The objective of this study is to assess the performance of a disease-agnostic treatment sequencing heuristic for deriving LOT in a biomarker-defined, pan-tumor cohort.

Methods

- Data source: The US nationwide electronic health record (EHR)-derived, de-identified Flatiron Health-Foundation Medicine Enhanced Pan-tumor Clinico-genomic Database, comprising retrospective longitudinal patient-level structured and unstructured data linked to genomic data, originating from ~280 cancer clinics (~800 sites of care).
- Inclusion criteria: Patients diagnosed with metastatic¹ disease across 17 rare solid tumor types, known TMB status by comprehensive genomic profiling, and ≥2 LOTs were selected. Data cutoff date: 30 June 2023.
- The disease-agnostic heuristic for deriving LOT was applied to patient-level systemic, non-oral antineoplastic treatment data recorded in the EHR record and chart-abstracted oral therapy.
- Lines were evaluated by cancer, indexed to metastatic² diagnosis date.
- Treatment sequencing, visualization of sequencing and qualitative assessment of LOT compared to National Comprehensive Cancer Network (NCCN) preferred/recommended regimens was performed with patients stratified based on TMB-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] versus non-TMB-H status (<10mut/Mb).
- Patterns of immune checkpoint inhibitor (ICI) use across cancer types were also evaluated by characterizing ICI prevalence, sequencing, and mono-/combo-ICI use among the TMB-H and non-TMB-H sub-cohorts.
- Statistical Methods: Descriptive statistics were summarized using N (%) and median (IQR).

Results

- Participants: 4,301 patients met eligibility criteria (Figure 1).
- Clinically appropriate LOTs and sequencing of LOTs were represented in a consistent manner across cancer types and aligned with NCCN preferred/recommended regimens.
- For patients with TMB-H tumors, ICI-therapy was well represented across most diseases with sequencing consistent with tumor-specific and tumor-agnostic approved indications for ICI-therapy (Figures 2 and 3).

Figure 1. Cohort Selection

All patients in the FH-FMI Pan-tumor CGDB at time of data cutoff date	All patients in the FH-FMI Pan-Tumor CGDB with a solid tumor of interest	Patients with matching FMI specimen tumor type 14,241	Patients with metastatic ¹ disease 11,009	Patients with at least 2 LOTs 4,982	Patients with TMB status available 4,301	

Dationt Characteristics

16,404

Table 1. Patient Characteristics							
Characteristic	TMB-H N = 402	non-TMB-H N = 3,899					
Age, Median (IQR)	64 (55, 72)	60 (49, 68)					
Gender, No. (%)							
Female	197 (49)	2,122 (54)					
Male	205 (51)	1,777 (46)					
Race, No. (%)							
Black/African American	18 (4.5)	304 (7.8)					
Other Race	62 (15)	623 (16)					
White	301 (75)	2,746 (70)					
Unknown	21 (5.2)	226 (5.8)					
Seen at Academic Practice, No. (%)	128 (32)	1,528 (39)					
Hispanic or Latino, No. (%)	14 (3.5)	230 (5.9)					
Group Stage, No. (%)							
Stage I-II	33 (8.2)	347 (8.9)					
Stage III	33 (8.2)	309 (7.9)					
Stage IV	221 (55)	1,759 (45)					
Unknown	115 (29)	1,484 (38)					
MSI-High, No. (%)	45 (12)	5 (0.1)					

Table 2. Distribution of Patient Count

by Tumor Type and Stratified by TMB Status

Cancer Type (total patients), No. (%)	TMB-H	non-TMB-H
1. Adrenal Cortical Carcinoma (34)	6 (18)	28 (82)
2. Anal Carcinoma (129)	22 (17)	107 (83)
3. Appendiceal Carcinoma (123)	8 (7)	115 (93)
4. Biliary Tract Carcinoma (BTC)* (675)	38 (6)	637 (94)
5. Small Intestine Carcinoma (133)	14 (11)	119 (89)
6. Cervical Carcinoma* (215)	46 (21)	169 (79)
7. Cutaneous Squamous Cell Carcinoma* (53)	39 (74)	14 (26)
8. Merkel Cell Carcinoma* (57)	23 (40)	34 (60)
9. Thyroid Carcinoma (Anaplastic, Papillary/Follicular) (104)	6 (6)	98 (94)
10. Glioblastoma Multiforme (GBM) (693)	26 (4)	667 (96)
11. Non GBM Glioma (201)	6 (3)	195 (97)
12. Non Cutaneous Melanoma* (110)	5 (5)	105 (95)
13. Gastrointestinal Neuroendocrine Tumor (non-pancreatic) (207)	9 (4)	198 (96)
14. Lung Neuroendocrine (134)	24 (18)	110 (82)
15. Pancreatic Neuroendocrine Tumor (182)	14 (8)	168 (92)
16. Occult/Unknown Primary (377)	88 (23)	289 (77)
17. Soft Tissue Sarcoma** (874)	28 (3)	846 (97)

^{*} denotes tumor type in which ≥1 checkpoint-inhibitor therapies have received tumor-specific FDA-approval ** ≥1 checkpoint-inhibitor therapies have received FDA-approval for the subset of patients with alveolar soft part sarcoma

Figure 2. Assessment of ICI use by TMB status, Line Number

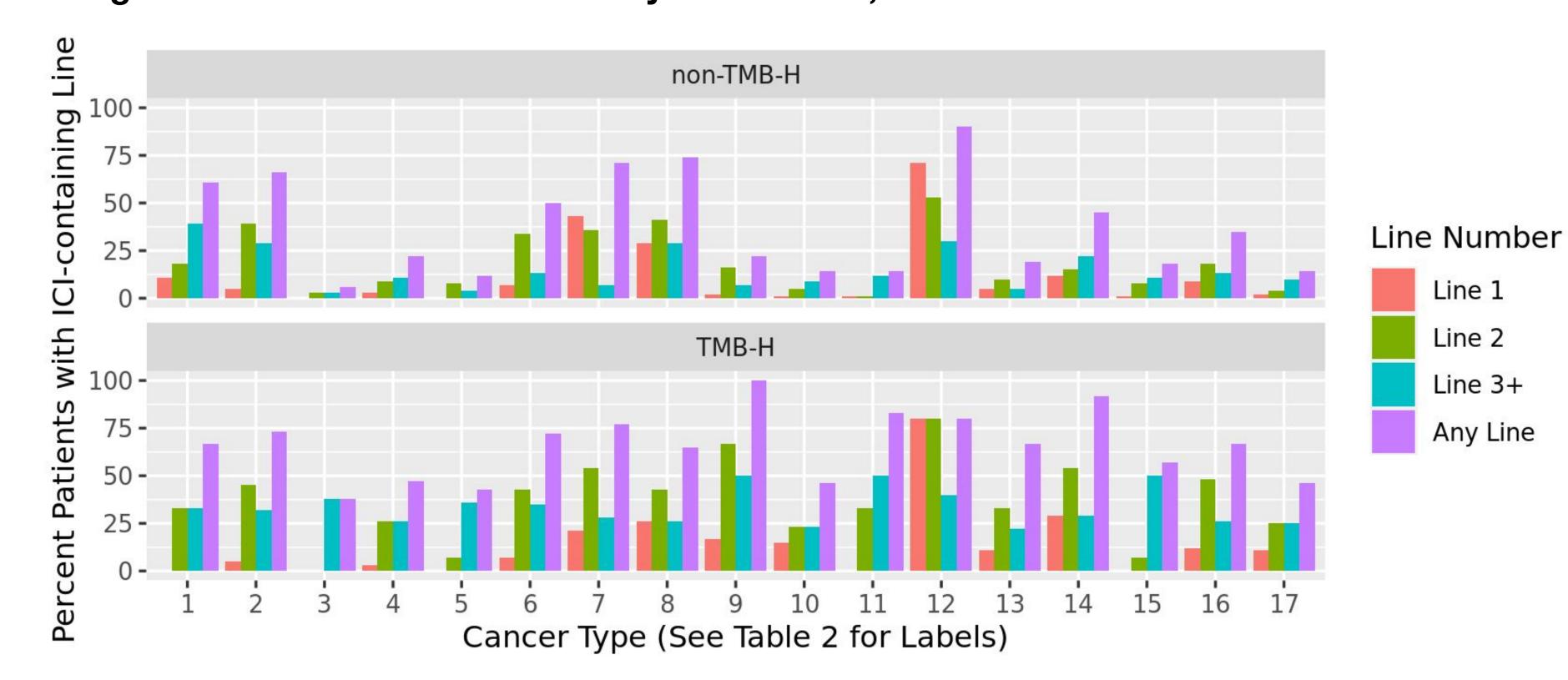
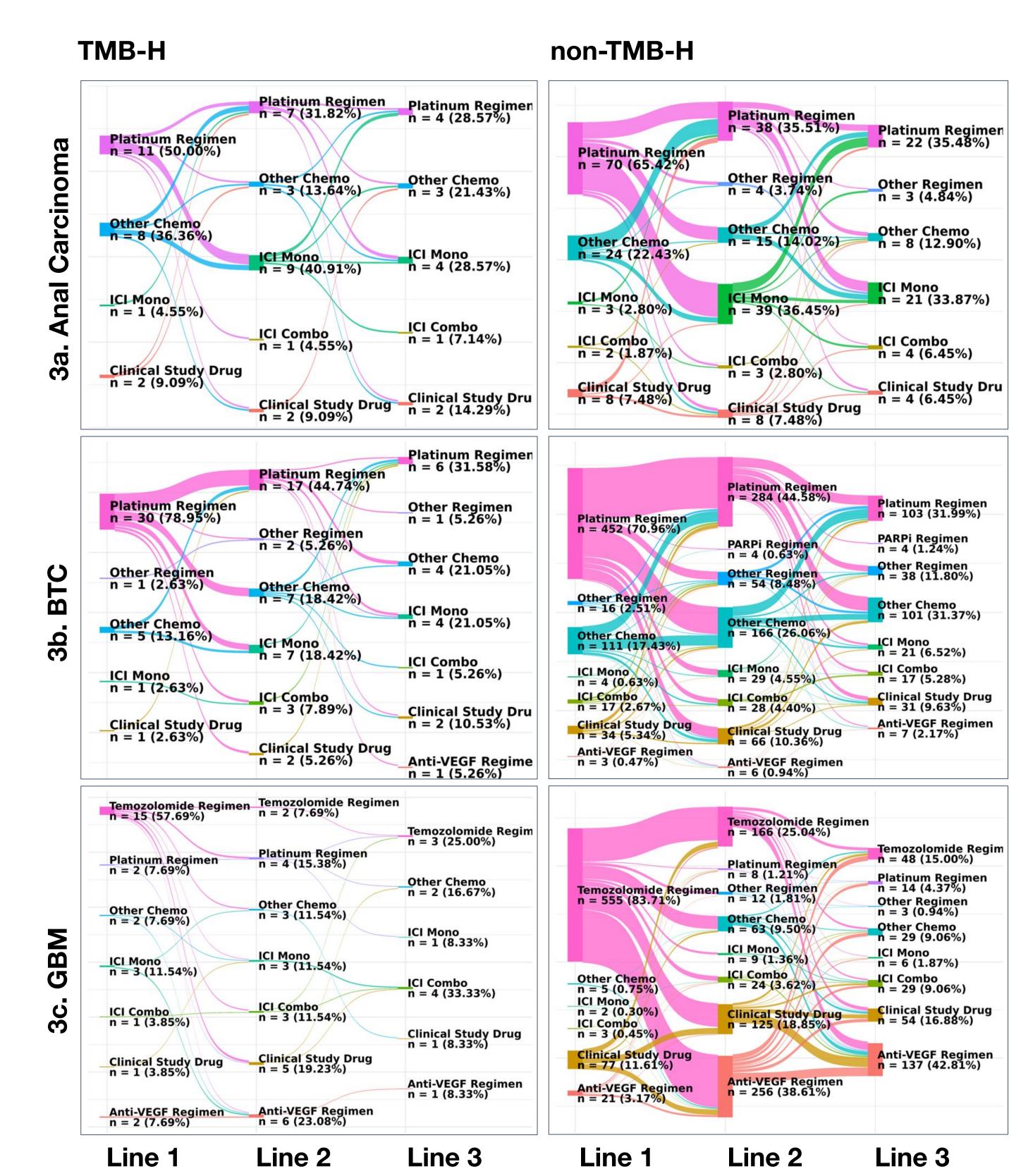



Figure 3. Sankey Diagrams, Select Cancer Types

Conclusions

- A disease-agnostic treatment sequencing heuristic for deriving LOT is feasible and can define clinically appropriate LOTs across a pan-tumor patient cohort.
- Performance was confirmed by assessing exposure to ICI-therapy stratified by TMB status.
- This approach may be applied to other real-world disease-agnostic datasets to facilitate treatment-related analyses.

Acknowledgments: Anjali Ramoutar (Flatiron Health, Inc.) for contributions in publication support and Madeline Morenberg (Flatiron Health, Inc.) for providing design support.

Disclosures: This study was sponsored by Flatiron Health, Inc.—an independent member of the Roche Group. During the study period, L.B., M.B., T.S., B.K., N.S., K.A., A.A., and C.C. reported employment with Flatiron Health, Inc. and stock ownership in Roche. T.S. reports current employment with Biograph.

Author Contact Info: Lilia Bouzit, lilia.bouzit@flatiron.com

¹ Patients diagnosed with Glioma were not required to have metastatic disease.

² Patients diagnosed with Glioma were indexed to initial diagnosis date.