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Background Results (continued)

Conclusions

Machine learning (ML): a broad concept with many Method Example

applications.

« ML refers to a family of statistical methods that generally ] . Construct a claims-based
focus on classification, ranking, and prediction with ML ggig%giﬁg;?hm predictive model based on a
minimal human supervision.[1] subset of validated cases [2]

ML approaches have the potential to facilitate causal
inference using large, multidimensional real-world dato Assict in medical record
(RWD), Exposure or outcome NLP of medical records review for case validation

| . misclassification bias

» However, the implementation of ML-based approaches [3/4]
in answering causal pharmacoepidemiology questions
can be conceptually and computationally complex. Incorrect categorization of
Researchers often ask the following questions: subjects with respect to Esti t f

) ' exposure or outcome ilistic bi i silirelter el felinigie ©

. o P Probabilistic bias analysis corrected effect estimates [5]
* What are the potential applications of ML to my
project?

* What kinds of barriers are there to using RWD for

P Determine the minimal set of
causal inference in my study? How can ML help? |dentification of

conditional distributions associated measured

- . covariates for risk prediction
= between variables models [6]

ML applications can strengthen causal research using
real-world healthcare data. However, the range and
complexity of applications limits wider use.

* To overcome this limitation, we provide a visual roadmap

to relevant ML applications to help researchers quickly
identify the appropriate tools given their specific
research question.

Note: The ML applications included in this poster are only
a small fraction of all the potential utilities of ML for RWD
research. This list can be expanded as new applications
emerge and are developed.
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Objective

To visually illustrate the relationships between different types
of barriers to causal inference in healthcare research and
selected ML applications targeted at addressing these

: : : Construct the optimal PS
Measured confounding | ML-based PS estimation Umodel [7%]'

barriers, using an applied pharmacoepidemiological , ,
Distortions of causal

Machine learning applications

PErspective. estimates based on Ensemble learning Construct both the optimal
available/measurable targeted maximum PS and outcome regression
study variables likelihood estimation models in doubly robust
(TMLE) estimation [10]

Methods

Empirically identify large Ns
High-dimensional proxy of variables that collectively
confounder adjustment could proxy unmeasured
factors [11]

* We conducted a targeted review of published literature
to identify RWD studies with ML applications for causal

research.
* We classified the applications into three broad domains
(presented via an infographic) and generated a list of ldentificat - Find a variable that can be
| . . . entification of negative .
illustrative case studies. Unmeasured confounding control variables used as a nﬁ%c]::tlve control
R lt Distortions of causal
€SULLS estimates based on . . . .
. |dentification of Find a variable that can be
unobserved variables . . .
iInstrumental variables used as an instrument [13]
The identified ML applications were classified into three

domains based on their potential to strengthen causal

inference in pharmacoepidemiology studies. List of acronyms and terms:
High-dimensional proxy confounder adjustment: using large numbers of empirically identified features that collectively serve as proxies for unspecified or
unmeasured confounders
Instrumental variable: a variable that affects the outcome of interest only through its effect on the exposure
. . Negative control variable: an alternative exposure (or outcome) variable whose relationship to the original outcome (or exposure) of interest does not use the
F U n d [ n g (] n d d I S C l OS U res same hypothesized causal pathway but is likely to involve the same sources of bias
NLP: natural language processing; a branch of Al concerned with the ability to support and manipulate human language
Probabilistic bias analysis: quantitative sensitivity analysis to assess the magnitude, direction, and uncertainty of bias using Monte Carlo techniques to

. : , repeatedly sample from bias parameter distributions
No fUﬂdlﬂg was received for the conduct of this StUdy- All authors are PS: propensity score; the conditional probability of being exposed given a set of covariates

employees of Carelon Research, which conducts health outcomes research Targeted maximum likelihood estimation: a doubly robust estimation method that includes a secondary targeting step that optimizes the bias-variance
: : : : : : : tradeoff for the parameter of interest
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