Discontinuation of High-Efficacy Disease-Modifying Therapies in Multiple Sclerosis Alexandra Miller, PharmD, MPH, Postdoctoral Fellow¹; Aasthaa Bansal, PhD¹; David Veenstra, PharmD, PhD¹

1. CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA

BACKGROUND

- Multiple Sclerosis (MS) is an autoimmune-mediated neurological disorder that causes central nervous system damage leading to neurological deficits^{1,2}
- 1 million individuals in the United States are living with MS, a majority are female and between 20-50 years old at diagnosis³
- Disease-modifying therapies (DMTs) are treatments that have been shown to reduce the activity and progression of MS. High-efficacy DMTs are those that have been found to reduce relapses by more than 50% on average⁴
- Assessment of recent studies focused on the rates and reasons for discontinuation of high-efficacy DMTs is needed to inform clinical decision-making

OBJECTIVE

Identify the rates and reasons for discontinuation of highefficacy DMTs among adult patients with MS

METHODS

Key inclusion criteria for this targeted literature review:

- Observational studies published in English between January 2020 and April 2024
- Adult patients with Multiple Sclerosis
- High-efficacy Disease-Modifying Therapies (DMTs): Alemtuzumab (Lemtrada) Cladribine (Mavenclad) Mitoxantrone (Novantrone) Natalizumab (Tysabri) Ocrelizumab (Ocrevus)
- Ofatumumab (Kesimpta)
- Ublituximab (Briumvi)
- Rates and/or reasons for discontinuation or persistence of high-efficacy DMTs

Figure 1. PRISMA Flow Diagram

RESULTS

Study (Author, Year)	Country	Study Design	Data Source	Sample Size	Age	Sex (Percent Female)	Type of MS (Percent RRMS)	High Efficacy DMTs Included
Bose, 2021⁵	Canada	Retrospective observational	EHR [Ottowa Hospital MS Clinic]	Alemtuzumab: N=46 Cladribine: N=65	Median: Alemtuzumab: 36.1 (IQR: 31-42) Cladribine: 43.8 (IQR: 37-50)	Alemtuzumab: 82.6% Cladribine: 70.8%	Alemtuzumab: 93.5% Cladribine: 53.8%	Alemtuzumab Cladribine
Brownlee, 2023 ⁶	England	Retrospective observational	Claims Database [Blueteq® High-Cost Drug Platform]	Cladribine: N=1934	Not reported	Not reported	Not reported	Cladribine
Coban, 2021 ²	USA	Retrospective observational	EHR [University of Connecticut Health MS Center]	Ocrelizumab: N=82	Mean: 41 ± 11	RRMS: 55% PPMS: 21% SPMS: 66%	72%	Ocrelizumab
Engmann, 2021 ¹	USA	Retrospective observational	Claims Database [IQVIA PharMetrics Plus Commercial Claims®]	Natalizumab: N=341 Ocrelizumab: N=1319	Mean: Natalizumab: 41.3 ± 11 Ocrelizumab: 47.9 ± 9.9	Natalizumab: 72.4% Ocrelizumab: 65.7%	Not reported	Natalizumab Ocrelizumab
Gorritz, 2023 ⁷	USA	Retrospective observational	Claims Database [IQVIA PharMetrics Plus Commercial Claims®]	Ofatumumab: N=576	Mean: 46.7	79.4%	Not reported	Ofatumumab
Horakova, 2020 ⁸	Czechia	Retrospective observational	EHR [General University Hospital in Prague]	Natalizumab: N=193	Mean: 34.9 ± 8.84	71.5%	100%	Natalizumab
Moccia, 2022 ⁹	Italy	Retrospective observational	EHR [Campania Region Hospital Centers]	Alemtuzumab: N=31 Cladribine: N=30 Natalizumab: N=261 Ocrelizumab: N=398	Mean: Alemtuzumab: 35.4 ± 8.3 Cladribine: 43.1 ± 12.0 Natalizumab: 34.1 ± 11.0 Ocrelizumab: 45.7 ± 11.0	Alemtuzumab: 67% Cladribine: 73% Natalizumab: 70% Ocrelizumab: 56%	Not reported	Alemtuzumab Cladribine Natalizumab Ocrelizumab
Okuda, 2022 ¹⁰	USA	Retrospective observational	EHR [Multiple Sclerosis and Neuroimmunology Clinic at The University of Texas Southwestern Medical Center]	Alemtuzumab: N=29 Natalizumab: N=167 Ocrelizumab: N=133	Mean at diagnosis: 38.6 ± 9.9	85.7%	Not reported	Alemtuzumab Natalizumab Ocrelizumab
Pardo, 2022 ¹¹	USA	Retrospective observational	Claims Database [MarketScan® Commercial and Medicare Supplemental]	Natalizumab: N=120 Ocrelizumab: N=524	Mean: Natalizumab: 43 ± 11 Ocrelizumab: 49 ± 10	Natalizumab: 79% Ocrelizumab: 67%	Not reported	Natalizumab Ocrelizumab
Rauma, 2022 ¹²	Finland	Prospective and retrospective observational	Registry [Finnish MS Registry]	Cladribine: N=179	Mean at initiation: 35.9 ± 9.9	85.5%	98.9%	Cladribine
Santos, 2023 ¹³	Portugal	Retrospective observational	EHR [Portuguese Tertiary Hospitals]	Cladribine: N=182	Mean at initiation: 41.1 ± 12.1	68.7%	88.5%	Cladribine
Sorensen, 2023 ¹⁴	Denmark	Retrospective observational	Registry [The Danish Multiple Sclerosis Registry]	Cladribine: N=268	Mean: 40.6 ± 10.7	66.8%	97.8%	Cladribine
Spelman, 2023 ¹⁵	Global	Retrospective observational	Registry [<i>MSBase Registry</i>]	Cladribine: N=633	Mean: 44.1 ± 12.3	76.2%	87.1%	Cladribine
Zhu, 2023 ¹⁶	Global	Retrospective observational	Registry [MSBase Registry]	Ocrelizumab: N=425	Mean: 42.8 ± 11.2	72%	100%	Cladribine

Table 2. Summary of Discontinuation Rates and Follow-Up Period Ranges

DMT	Follow-Up Ranges in months	Rate Ranges Across All Follow-Up Time	Rates After 12-24 months of Follow-Up					
Alemtuzumab	13.8-38.4	0.4-54.8%	54.8%					
Cladribine	11.8-39.6	0.0-21.5%	4.3-11.3%					
Natalizumab	12-54	34.4-77.8%	34.4-45.0%					
Ocrelizumab	12-34.8	1.0-25.0%	1.0-25.0%					
Ofatumumab	6-12	19.3-25.5%	25.5%					

Legend Explanation for Figures 3 and 4:

Intolerability¹⁰: adverse drug reactions like injection site reaction, hair thinning, GI side effects, headache, flushing Medical Reasons¹⁰: lab abnormalities, anti-JC virus antibody positive with high index values, presence of clinical relapses, disability progression, development of new/enlarging T2 lesions on MRI of CNS Non-medical Reasons¹⁰: family planning, desire for oral treatment, insurance coverage, costs, desire to decrease medication burden, preference to switch, subjective report of lack of efficacy

Other Funding: AM is supported by a Genentech post-doctoral fellowship. AB and DV receive funding from UW CHOICE-Genentech fellowship Conflict of Interest: DV has done consulting with Genentech. References: 1. Engmann NJ.2021. Journal of Managed Care & Specialty Pharmacy. PMID: 33624535 2. Coban H, 2021. Multiple Sclerosis Society [Internet]. Who Gets MS? Available from: https://www.nationalmssociety.org/What-is-MS/Who-Gets-MS 5. Bose G. 2021. Multiple Sclerosis and Related Disorders. PMID: 33901969. 6. Brownlee, W. 2023. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2022. Journal of Neurology. PMID: 35953597. 10. Okuda, D.T. 2022. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and Related Disorders. PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and PMID: 33296966 9. Moccia M. 2023. CMSC Annual Meeting. 8. Horakova D. 2020. Multiple Sclerosis and PMID: 33296966 9. Moccia M. 2023. Multiple Sclerosis and PMID: 33296966 9. Moccia M. 2023. Multiple Scleros Related Disorders. PMID: 35661567. 11. Pardo, G. 2022. Neurology and Therapy. PMID: 35020156 12. Rauma I. 2023. Multiple Sclerosis and Related Disorders. PMID: 35483129. 13. Santos M. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 11. Pardo, G. 2022. Neurology and Therapy. PMID: 35483129. 13. Santos M. 2023. Clinical Neuropharmacology. PMID: 35483129. 14. Sorensen PS. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 11. Pardo, G. 2022. Neurology and Therapy. PMID: 35483129. 13. Santos M. 2023. Clinical Neuropharmacology. PMID: 35483129. 14. Sorensen PS. 2023. Multiple Sclerosis and Related Disorders. PMID: 35483129. 14. Sorensen PS. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 14. Sorensen PS. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelman T. 2023. Multiple Sclerosis and Related Disorders. PMID: 35661567. 15. Spelma P. 2023. Spelman T. 2023. Nultip 2023. JAMA Neurology. PMID: 37273217.

Summary of Results:

- and/or reasons for discontinuation of highefficacy DMTs
- 5 studies reported only rates
- Studies varied widely with:
- per DMT
- most in the range of 12-24 months
- intolerability
- reported

Figure 3. Discontinuation Rates and Reasons of High-Efficacy DMTs

Follow-up periods are listed next to each study in months Brownlee, Engmann, Gorritz, Moccia, and Pardo studies were not included in *Figures 3 or 4, because reasons for discontinuation were not reported.*

Alemtuzumab	Bose (n=46) [38.4 mo] Okuda (n=29) [34.8 mo]	
	Bose (n=65) [39.6 mo]	
	Rauma (n=179) [19 mo]	
ibine	Santos (n=162) [F/U NA]	
Cladr	Sorensen (n=268) [34.7 mo]	
	Spelman (n=633) [13.7 mo]	
der	Horakova (n=193) [54 mo]	
alizum	Okuda (n=167) [34.8 mo]	
Nat		
ab	Coban (n=82) [2-7 or 27-32 mo]	
elizum	Okuda (n=133) [34.8 mo]	
Ocre	Zhu (n=425) [25.2 mo]	
	(0%
	Intolerability	ed

UNIVERSITY of WASHINGTON

THE CHOICE INSTITUTE

PCR166

School of Pharmacy

• We identified 14 studies investigating the rates

• 9 studies reported both rates and reasons

• Sample sizes between 29-1,934 participants

• Follow-up spanning 11.8-54 months with • Differing discontinuation definitions Alemtuzumab, cladribine, and natalizumab were

primarily discontinued due to medical reasons Ocrelizumab was primarily discontinued due to

Ofatumumab did have discontinuation reasons

Intolerability Medical Non-Medical Other

CONCLUSIONS & IMPLICATIONS:

- Alemtuzumab and natalizumab had the highest rates of discontinuation after 12-24 months and were discontinued primarily for medical reasons
- **Treatment efficacy was the driving factor in** the discontinuation of high-efficacy DMTs compared to intolerability or non-medical reasons after 12-24 months
- Future studies should continue to explore discontinuation trends among newer highefficacy DMTs, including of atumumab and ublituximab, and utilize a consistent definition for DMT discontinuation