Benefits and barriers to same-day long-acting reversible contraception insertion: evidence and its implications from US settings Andrew Kennedy¹, Simone Crespi², Gursimer Jeet¹, Greta Lozano-Ortega¹ 1 Broadstreet HEOR, Vancouver, B.C., Canada; 2 Organon & Co, Jersey City, New Jersey

Background & Objective

An important barrier to long-acting reversible contraceptive (LARC) access in the US is the practice of requiring two visits; one to receive contraceptive counseling and a separate visit for insertion. Improving timely same-day access to LARCs for everyone who is medically eligible and desires to do so has the potential to improve convenience and access for a wider population of women and expand use of reproductive healthcare overall. This study aimed to synthesize the literature investigating the impact of same-day LARC insertion as well as barriers and facilitators to same-day LARC access in the United States (US).

Study Design & Methods

- A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement and implementation was guided by the Population, Exposure, Comparator, Outcomes, Study Design (PECOS) framework.
- Medline, EMBASE, CINAHL, and ScienceDirect databases were systematically searched on January 2023. Studies were screened by two independent reviewers and all published, non-review studies evaluating LARC use or access among women and adolescent girls of reproductive age, providers, policy makers, and health systems in the US were included.
- Outcomes of interest were extracted in duplicate and included health and economic benefits of, and factors affecting access to same-day LARC insertion.

Results

Study design

- N=19 studies investigated 16 different initiatives aimed at increasing sameday LARC uptake
- Same-day LARC insertion was investigated in 21 **states** (see map)
- N=30 were multicentric
- N=17 were in both urban and rural settings

N=33 States included in SLR studies included

User characteristics (N=12 studies)

- All were women of reproductive age
- Insurance type was reported in 8 studies
- Women with public insurance ranged from
 - 3.6% to 100% of study populations

Provider characteristics (N=21)

- N=1,472 clinics
- N=9,040 practitioners
- Proportion of clinics offering on-site LARC insertion varied
- Implant: 18% to 100% IUD: 29% to 100%
- Most common clinic type: Obstetrics and Gynecology

Results, continued

Five categories of program features aimed to increase same-day access to LARCs were most frequently highlighted: cost support, provider training / education, patient-centered counseling, implementation of evidence-based best practices, and increased LARC availability (Table 1). Only 8 studies reported data both pre- and post-intervention.

Table 1. Categories of features implemented across LARC access programs

Program Features	No. of programs	Names of programs		
Cost support*	11	Buy and Bill¹ Complete CHOICE⁵ HTW/FPP7 IMPACCT¹⁰	California Family PACT ^{2,3} DelCAN ⁶ IA/CO Statewide Initiatives ⁸ PMLC ¹¹	CHOICE Project ⁴ FPE CAP ⁹ Z-CAN ^{12,13}
Provider training / education	6	CME accredited course ¹⁴ IMPACCT ¹⁰	DelCAN ⁶ National TTA ^{15,16}	FPE CAP ⁹ Z-CAN ^{12,13}
Implemented best practices [†]	5	PMLC ¹¹ QIP (DeBoer) ¹⁸	PREG Checklist ¹⁷ QIP (Landgraf) ¹⁹	National TTA ^{15,16}
Patient-centered counseling	5	CHOICE Project ⁴ PMLC ¹¹	Complete CHOICE ⁵ Z-CAN ^{12,13}	IMPACCT ¹⁰
Increased on-site availability	3	DelCAN ⁶	PMLC ¹¹	Z-CAN ^{12,13}

Abbreviations: CME: Continuing Medical Education; CO: Colorado; DelCAN: Delaware Contraceptive Access Now; FPE CAP: Family Planning Elevated Contraceptive Access Program; FPP: Family Planning Program; HTW: Healthy Texas Women; IA: Iowa; IMPACCT: Innovative Model of PAtient-Centered ContracepTion; PACT: Planning, Access, Care, and Treatment; PMLC: Performance Measure Learning Collaborative; PREG: Pregnancy Reasonably Excluded Guide; QIP: Quality Improvement Project; TTA: Technical Assistance and Training; Z-CAN: Zika Contraceptive Access Network

Note: Total numbers do not add up to 19 due to some programs utilizing multiple features to improve LARC access. *Cost support includes cash grants to stock devices up front, provider ent for contraceptive methods, no-cost methods for users, and others. Implemented best practices include the Pregnancy Reasonably Excluded Guide (PREG), quic starting contraception, removing STI testing and result requirements, and others.

Strengthening the health system and improving health care programs

Barriers and facilitators to same-day LARC access were identified throughout the literature with recommendations for improving the health system and increasing the effectiveness of health care programs across the US.

BARRIERS

- Non-availability of on-site LARC devices
- Lack of Continued Medical Education (CME) for providers
- Lack of integrated approaches
- Mixed adherence to practice guidelines recommendations
- Administrative and financial barriers
- Communities with disproportionately high teen birth rates saw inconsistent implementation of services
- Accessibility and quality concerns

ISPOR 2024

FACILITATORS

- Increasing appointment length
- Maintaining clinic inventory
- Building clinic capacity through staff-wide training and education
- Effective reimbursement
- Improving same-day insertion coverage in public health clinics for the under- and un-insured
- Transferring evidence between programs
- Expanding use of performance measures to help increase access
- Building robust provider networks
- Ensuring patient privacy and confidentiality
- Utilizing a buy-and-bill model to expand access

© 2022 Organon group of companies. All rights reserved.

Program Results

Clinic staff were more likely to offer single-visit LARC after attending a CME course with on-site training implemented by Harper et al., with a 10% increase of staff requiring only a single visit to place implants.¹⁴ Training also influenced clinical practice change as the overall clinic ability to place the implant in one visit increased (Figure 1; adjusted odds ratio [aOR]: 1.9, 95% confidence interval: 1.2-2.9).¹⁴

Figure 1. Single visit requirement for LARC placement post-CME intervention¹⁴

Abbreviations: aOR: adjusted odds ratio; CME: Continuing Medical Education; IUD: intrauterine devic Notes: Other practice settings include teen clinics, school-based clinics, and college health centers; *: Adjusted for provider type, training year

Loyola Briceno et al. demonstrated the effect of the Performance Measure Learning Collaborative where one county site that ordered and maintained a larger stock of LARC devices reported a 14% increase in same-day insertions between November 2015 and May 2016.¹¹

Cost savings associated with same-day LARC insertion

- A decision model analyzing the economic impact of same-day LARC insertion in Indiana from Medicaid's perspective showed that sameday LARC placement was associated with cost savings of \$2,117 USD per adolescent per year, compared to requiring a second visit.²⁰
- The cost of placing a LARC device would have to increase from \$74 to \$4,692 USD on average to make the second visit less expensive.

Conclusions & Limitations

Programs aimed at increasing same-day LARC insertion were associated with increases in same-day LARC uptake and cost savings. Opportunities to ensure same-day LARC access include promoting user and provider awareness, extending funding, decreasing insurance-related administrative hurdles, and building trust in contraceptive care.

Some limitations to the present study included:

- Variation in the definition of "same-day" due to the lack of a procedure code for women who received same-day LARC, leading to possible overor under-reporting of numbers
- Access to and utilization of LARCs was the primary outcome in most studies, with same-day LARC insertion reported as a secondary outcome

References

 MA Davis, et al. Hawaiři J. Health Soc. Welf. 2020; 79(10): 312-16.11. AC Loyola Briceno, et al. Contraception 2017; 96(3): 166-74.

 1A Biggs, et al. Obstet. Gynecol. 2015; 126(2):338-45
 12. EL Lathrop, et al. Cantraception 2020; 102(1): 34-38.

 1 Natavio, et al. AM J Obstet. Gynecol. 2018; 29(6): 595-61-11.
 12. EL Lathrop, et al. Cantraception 2020; 102(1): 34-38.

 1 Natkvio, et al. AM J Obstet. Gynecol. 2018; 29(6): 595-61-11.
 14. CC Harper, et al. Preventive Med. 2020; 114:106290.

 12. Buckel, et al. Contraception 2019; 99(4): 222-27.
 15. LM Romero, et al. J Adol. Health 2015; 57(5): 488-95.

 14. Macdoll, et al. AM J Obstet. Gynecol. 2022; 21
 15. LM Romero, et al. J Adol. Health 2017; 60(3): 530-537.

 17. DJ O'Laugplin, et al. MC/Health Serv. Res. 2022; 22(1): 1498.
 17. DJ O'Laugplin, et al. MCP: 1028 - 2024; 4(3): 295-304.

 18. TChen, et al. B/C Health Serv. Res. 2022; 22(1): 1955.
 10. A Landgraf, et al. J Nurse Wormer's Health 2018; 22(4): 302-09.

 18. Cohntraception 2013; 88(5): 629-355.
 10. Haldpraf, et al. J Auser Acat. 2019; 16(4): er3-er5.

 19. Cholin, et al. B/C Health Serv. Res. 2022; 22(1): 1955.
 20. TA Wilkinson, et al. JAMA Network Open 2019; 2(9): e1911063.
CH Buckel, et al. Contraception 2019;99(4):222-27. RK McColl, et al. AM J Obstet. Cynecol. 2022;21 S Vohra-Gupta, et al. BMC Health Serv. Res. 2022;22(1):1498. MA Biggs, et al. Contraception 2013;88(5):629-35. SR Cohen, et al. BMC Health Serv. Res. 2022;22(1):965. MC Politi, et al. Contracept Reprod. Med. 2016;1:1-9.

- **Disclosures & Funding Statement**
- This study was funded by Organon. AK, GJ and GLO are employees of Broadstreet HEOR which received funding from Organon for this work. SC is an employee of Organon.

