A cost-consequence analysis of ponatinib versus imatinib in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) in the United States

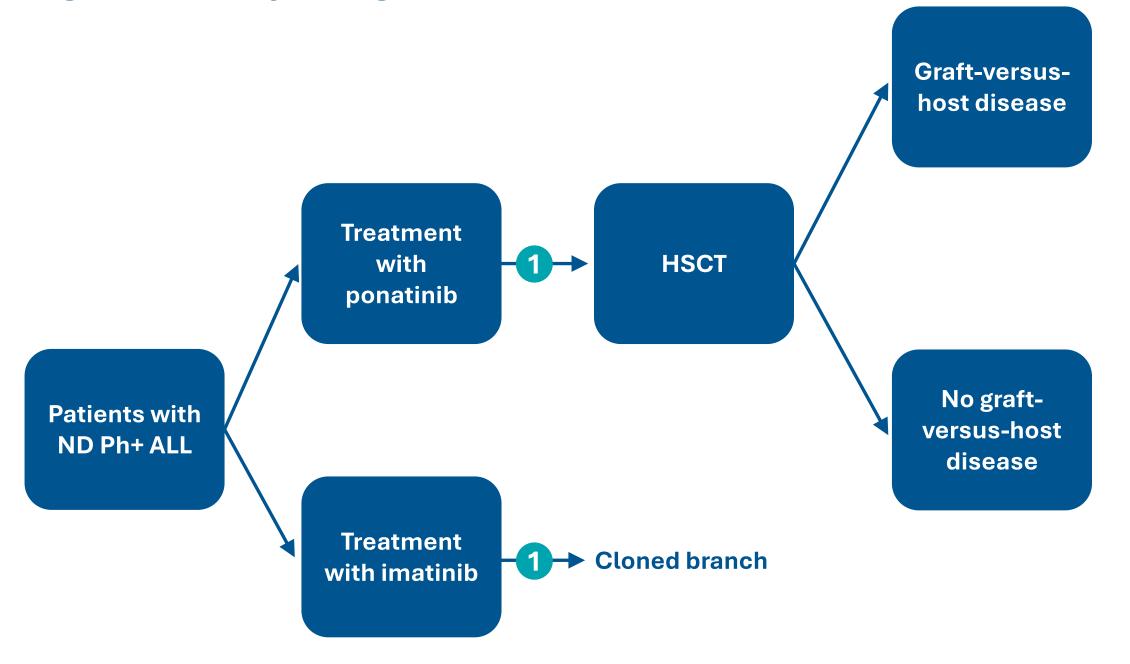
Luis Hernandez, PhD, MPH, MSc,¹ Shawn Davies, MA,² Cong Li, PhD,³ L Evan Reddick, PhD,¹ Ivar Jensen, MBA²

¹Takeda Pharmaceuticals America, Inc., Lexington, MA, USA; ²PRECISIONheor, Precision Value & Health, Boston, MA, USA; Takeda Development Center Americas, Inc., Lexington, MA, USA

Background

- Hematopoietic stem cell transplantation (HSCT) plays a critical role in the management of ALL; however, the associated costs and risks of HSCT complications are burdensome to patients and payers^{1,2}
- The addition of tyrosine kinase inhibitors (TKIs) to chemotherapy regimens has improved outcomes in patients with ALL and may delay or avoid the need for HSCT³
- The PhALLCON trial (NCT03589326) is the first randomized study comparing ponatinib and imatinib (both in combination with chemotherapy) in patients with newly diagnosed (ND) Ph+ ALL. At the time of the final analysis for the primary endpoint (data cutoff date: August 12, 2022), ponatinib was shown to be superior to imatinib,4 and the exploratory efficacy endpoint timeto-HSCT showed that ponatinib may offer benefits over imatinib by delaying HSCT
- Ponatinib in combination with chemotherapy for the treatment of adult patients with ND Ph+ ALL was approved on March 19, 2024, under accelerated approval by the US Food and Drug Administration⁵

Objective


 To assess the clinical economic impacts of delayed or avoided HSCT in the treatment of patients with ND Ph+ ALL receiving first-line ponatinib versus imatinib over a 3-year time horizon from a US commercial health plan perspective

Methods

Study design

 A cost-consequence model (CCM) was developed using individual patient data on time-to-HSCT from the PhALLCON trial over a 3-year time horizon from a US commercial health plan perspective (Figure 1)

Figure 1: Study design

Executive Summary/Abstract

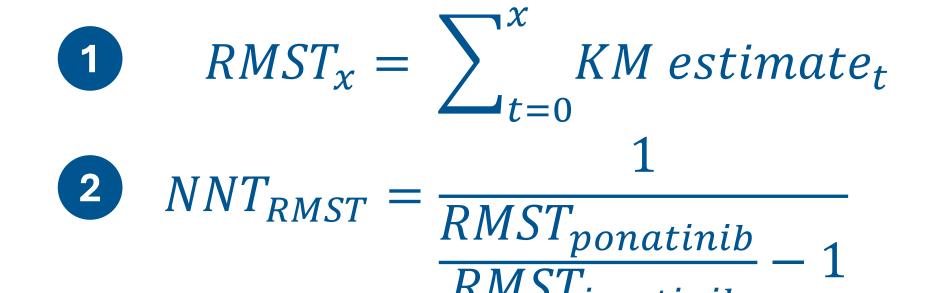

- HSCT is an important treatment for patients with ND Ph+ ALL; however, it is a resource-intensive and costly procedure associated with complications and morbidity
- Patients with ND Ph+ ALL may be able to avoid or delay HSCT through treatment with TKIs
- The PhALLCON trial shows that ponatinib may offer benefits over imatinib by delaying HSCT
- This analysis demonstrates that for patients with ND Ph+ ALL, ponatinib may offer more efficient care by delaying or avoiding HSCT and complications thereof at a modest cost versus treatment with imatinib
- The CCM considers Ph+ ALL epidemiology and costs associated KM estimates of the time-to-HSCT by treatment arm from the with drug acquisition, HSCT, and graft-versus-host disease in a cohort of 1 million commercially insured individuals
- Drug costs are assumed to be continuously accrued until HSCT
- Imatinib drug costs are generic
- Model inputs (epidemiology, clinical, and costs) are informed by clinical trial results, published literature, and public databases (Table 1)

Table 1: Model inputs

Pa	Value	
Epidemiology	Incidence of ALL (%)	0.0026
	Ph+ ALL (% of ALL)	25 ⁷
	HSCT distribution	
	Autologous (%)	36.48
	Allogeneic (%)	63.68
	Graft-versus-host disease incidence (%)	36.4 ⁹
Costs (USD)	HSCT procedure	307,914 ¹⁰
	Annual cost	
	Ponatinib	245,034 ¹¹
	Imatinib (generic)	30,325 ¹¹
	Pretransplant	
	Autologous harvest	64312
	Allogeneic harvest	82312
	Median HSCT hospitalization costs	98,866 ³
	Post-HSCT monthly cost	2,527 ¹³
	Graft-versus-host disease	89,061 ⁹

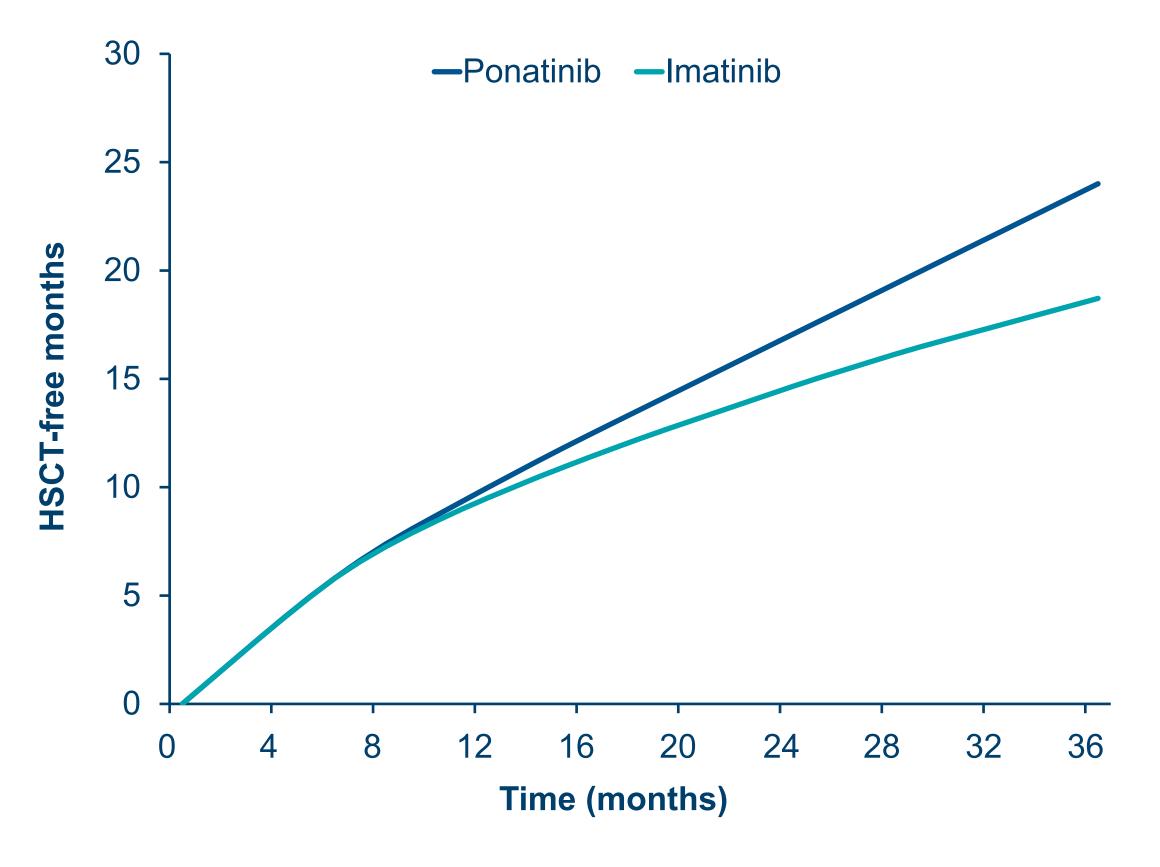
USD, US dollar

Figure 2: Model equations

KM, Kaplan-Meier; NNT, number needed to treat; RMST, restricted mean survival time

- PhALLCON trial are used to estimate RMST, defined as the number of HSCT-free months, for ponatinib and imatinib (Figures 2 and 3)
- For this analysis, RMST represents the mean time until a patient receives HSCT (cumulative HSCT-free months)
- RMST is measured or calculated as the area under the KM curve from time 0 to a selected time point
- The NNT to avert 1 HSCT was calculated using the relative difference in RMST between ponatinib and imatinib at Years 1, 2, and 3 (Figure 2)
- Cumulative total costs are calculated for Years 1, 2, and 3
- Total costs are reported as follows:
- Per month of delayed HSCT with ponatinib compared with imatinib
- Per patient per month (PMPM)

Results


Model outcomes

- In a 1-million-member commercial health plan, an estimated 4.6 patients will develop Ph+ ALL each year
- Following these 4.6 patients over a 3-year time horizon, treatment with ponatinib results in 1.2 averted HSCTs on average versus imatinib
- By Year 3, the NNT to avert 1 HSCT with ponatinib is estimated to be 3.5, and patients treated with ponatinib experience on average up to 5.3 additional HSCT-free months versus imatinib (Figure 3)
- The incremental cost per month of delayed HSCT was \$22,802 in Year 1 and declined to \$1,712 by Year 3 with ponatinib (Table 2)
- Total incremental PMPM costs were \$0.05 and \$0.04 in Year 1 and Year 3, respectively

Table 2: CCM outcomes

Outcomes	Year 1	Year 2	Year 3		
Total averted HSCTs	0.57	0.82	1.18		
NNT (based on RMST)	19.94	6.10	3.54		
HSCT-free months (based	on RMST)				
Ponatinib	9.98	17.06	24.00		
Imatinib	9.50	14.65	18.71		
Delayed-HSCT months	0.48	2.40	5.29		
Cumulative total costs per patient (USD)					
Ponatinib	376,097	546,234	688,109		
Imatinib	254,898	319,645	367,053		
Cost/HSCT-free month (US	SD)				
Ponatinib	37,691	32,027	28,667		
Imatinib	26,826	21,812	19,614		
Cost/month of delayed HSCT with ponatinib (USD)	22,802	4254	1712		
Total costs PMPM (USD)					
Ponatinib	0.14	0.10	0.09		
Imatinib	0.10	0.06	0.05		
Cost difference	0.05	0.04	0.04		

Figure 3: Cumulative HSCT-free months in patients treated with ponatinib and imatinib

Conclusion

 This analysis demonstrates that treatment of ND Ph+ ALL patients with ponatinib may offer more efficient care by delaying or avoiding HSCT and complications thereof at a modest cost versus treatment with imatinib

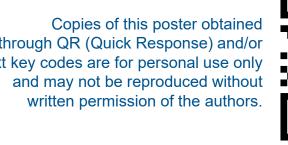
References

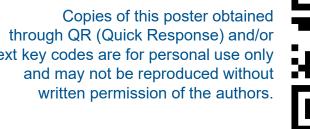
1. Khera N, et al. Blood 2012;120:1545-51. 2. Godara A, et al. JCO Oncol Pract 2021;17:e355-68.

3. Vettenranta K, et al. Front Pediatr 2021;9:807002

5. ICLUSIG® (ponatinib) [package insert]. Takeda Pharmaceuticals U.S.A. Inc. Accessed April 9, 2024 6. National Cancer Institute. Cancer Stat Facts. Available at: https://seer.cancer.gov/statfacts/html/alyl.html. Accessed April 18, 2004. 7. Leukemia & Lymphoma Society. PH-Positive ALL Therapy. Available at: https://www.lls.org/leukemia/acute-lymphoblasticleukemia/treatment/ph-positive-all-therapy. Accessed April 18, 2004.

8. Bonafede M, et al. J Med Econ 2017;20:1244-51 9. Farhadfar N, et al. Transplant Cell Ther. 2021 Dec;27:1007.e1-1007.e8. 10. Agency for Healthcare Research and Quality. Healthcare cost & utilization project user support. Available at: www.hcupus.ahrq.gov/toolssoftware/ccsr/dxccsr.jsp. Accessed April 18, 2024. 11. ProspectoRx. Elsevier. 2021. Accessed December 7, 2023. https://prospectorx.com. 12. Practice Management Information Corporation (PMIC). Usual, customary and reasonable fees. ISBN: 978-1-57066-725-1


13. Brown PA, et al. J Natl Compr Canc Netw 2021;19:1079–1109.


Acknowledgments

This study was funded by Takeda Pharmaceuticals, Inc.

Disclosures

LH, CL, and LER: employment and stock ownership (Takeda) SD and IJ: employment (PRECISIONheor)

