Validated case-identifying algorithms using Canadian administrative health data: a targeted literature review

Bowie AC,¹ Tinajero MG,¹ Qian C¹ ¹Broadstreet HEOR, Vancouver BC Canada

Background

- Case-identifying algorithms are essential for identifying patients and events in real-world evidence studies
- Few centralized resources exist to support the implementation of case-identifying algorithms
- Single-payer health care systems in Canada provide comprehensive, population-level data to support the development and validation of algorithms

Objective

To identify and summarize published, validated case-identifying algorithms developed using Canadian administrative health data

Methods

- A targeted literature review (TLR) was conducted in Ovid MEDLINE, PubMed, and publications lists of Canadian administrative health databases
- English-language studies were included if they used Canadian data and reported ≥ 1 of the following performance measures: sensitivity (SE), specificity (SP), positive predictive value (PPV), or negative predictive value (NPV)
- No date restrictions were applied
- Three independent reviewers screened all identified abstracts and extracted study and algorithm details from eligible studies
- Studies were categorized by individual disease and disease areas based on the International Classification of Diseases (ICD)-10 classification system

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ICD-10, International Classification of Diseases - 10th Revision; NPV, negative predictive value; PPV, positive predictive value; RWE, real world evidence; SE, sensitivity; SP, specificity; TLR, targeted literature review

•	2	70	
•	0	f tl	h
•	С	hr	(
Nı	ım	ho	r
N	ım	be	r
av	ail	ab	
ΑΙ	go	ritk	1
		Dia	ą
/			
		Lab	C
		Pro	
		Me	•
N		alg	
	•	d	i
	•	C	С
		\sim	
	•	e	X
	•	e Sj	х У
F	Peli	e Sj	х У
F	Reli	e S ed	х У
F	Reli	e S ed or	y t
F	Reli	e S ed or	
F	Reli	e S ed or	y t
F	Reli opp	e S ed or	
F	Reli ppp	e S ed or	
F	Reli ppp		
F	Reli ppp		
F	Reli pp ig ()		
F	Reli pp ig ()	e S ed or ur ur t (2	
F	Reli pp ig () () lee	e S ed or ur ur t (2	
F	Reli pp ig (e S ed or ur ur t (2	
F	Reli pp ig () () lee	e S ed or ur ur t (2	
F	Reli pp ig () () lee	e S ed or ur ur t (2	

studies were identified, and 82 eligible studies reporting 1453 algorithms were summarized ne 82 studies, 48 (58.5%) used data from the most populous province of **Ontario** onic kidney disease, diabetes, hypertension, and rheumatoid arthritis were the most frequent areas of focus (each representing ~4% of included studies)

	n (%)	Availability of porformance estimates	Algorithms		
of diseases with ≥ 1 algorithm (n = 82)	71 (86.6%)	Availability of performance estimates	n = 1453	Figu	
of ICD-10 chapters with ≥ 1 algorithm	15 (75%)	Any performance measure, n (%)	1453 (100%)	each	
e (n = 20)		Sensitivity (SE)	1380 (95.0%)		
m components (n = 1453)		Specificity (SP)	1246 (85.8%)		
gnosis codes	1341 (92.3%)	Positive predictive value (PPV)	1300 (89.5%)		
Diagnosis codes ONLY	934 (64.3%)	Negative predictive value (NPV)	1088 (74.9%)		
findings	dings63 (4.3%)lure codes221 (15.2%)				
cedure codes			1011 (71 60/)		
ication 225 (15.5%)			1041(71.076)		
arithma wara idantifiad far		SE & PPV	131 (9.0%)		
orithms were identified for:		SE & SP	125 (8.6%)		
seases of the eye of ear anditions originating in the perinatal period		SE, SP & PPV	44 (3.0%)		
kternal causes of morbidity and mortality		PPV only	43 (3.0%)		
mptoms, signs, and abnormal clinical and lab	oratory findings	SP, PPV & NPV	30 (2.1%)		
highlighting opportunities for future al	gorithms	SE only	22 (1.5%)		
solely on ICD-9/ICD-10 diagnosis codes - /	highlighting	SE, PPV & NPV	11 (0.8%)		
unities for direct application beyond the C	anadian context	SE, SP & NPV	6 (0.4%)		

Future applications

2. Example of database layout

	Algorithm components				Performance						
or r)	Disease	Diagnosis	Findings	Procedures	Medication	Description	SE	SP	PPV	NPV	Gold standard
013)	CKD	ICD-10: N18	No	No	No	≥ 1 hospital discharge OR ≥ 1 physician claim in 5-years	12.24	99.45	80.08	86.17	eGFR <45 mL/min per 1.73 m2

3. Flowchart of living database lifecycle and application

Results

Performance estimates will be summarized to *facilitate* comparisons between algorithms and support algorithm selection for application in RWE studies

Identification of validated algorithms for use in RWE research

Published literature

Publication of validated algorithms

BROADSTREET HEALTH ECONOMICS & OUTCOMES RESEARCH

Limitations

Generalizability of the summarized algorithms beyond the Canadian context may require additional validation due to region-specific variations in coding

Conclusions

- This study showed good coverage of Canadian-specific case identifying algorithms, with at least one algorithm identified for most ICD-10 chapters
- Limited resources to support the identification and application of caseidentifying algorithms exist
- To support validity and efficiency in RWE evidence generation, algorithms identified through this TLR will be transformed into a publicly available resource

REFERENCES

Fleet JL et al. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes. BMC Nephrol. 2013 Apr 5;14:81

For any questions please email Christina Qian at cqian@broadstreetheor.com