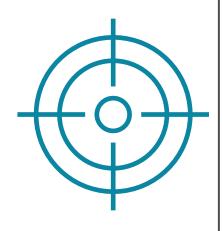
A Microsimulation Model for High-Risk Stage II and Stage III Colon Cancer Survivors Following the Current Guidelines

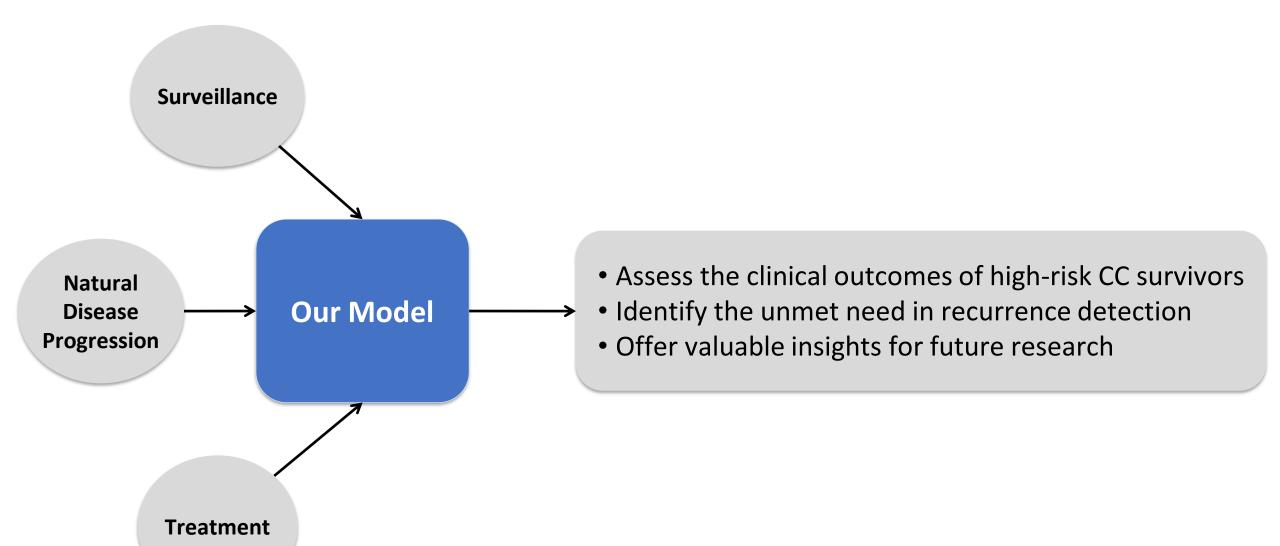
Sumeyye Samur¹, Emir Gursel¹, Ning Yan Gu², Melanie Palomares², Mert Sahinkoc^{1,3}, Oya Hoban¹, Gebra Cuyun Carter², Turgay Ayer^{4,5}, Jagpreet Chhatwal³, Aparna Parikh⁶, Alfred I Neugut⁷

¹Value Analytics Labs, Boston, Massachusetts, USA
 ²Exact Sciences Corporation, Madison Wisconsin, USA
 ³Massachusetts General Hospital Institute for Technology Assessment, Harvard Medical School, Boston, MA, USA
 ⁴Georgia Institute of Technology, Atlanta, Georgia, USA
 ⁵Emory Medical School, Atlanta, Georgia, USA
 ⁶Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
 ⁷Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA

DISCLOSURE

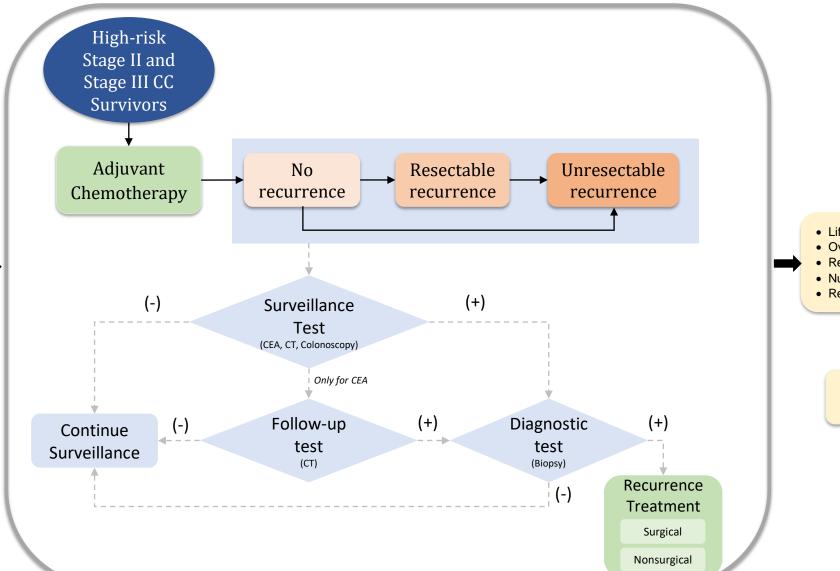

This study is supported by Exact Sciences

BACKGROUND


- Colon cancer (CC) constitutes approximately 6% of global cancer incidences, being one of the leading causes of cancerrelated deaths ¹
- High-risk Stage II and Stage III CC survivors continue to face the ongoing risk of recurrence, due to the presence of circulating tumor DNA (ctDNA)
- Current guidelines recommend surveillance for high-risk
 Stage II and Stage III CC survivors for possible recurrences
- The effectiveness of the recommended surveillance modalities following the guidelines are unclear

OBJECTIVE & APPROACH

- Our objective was to provide a better understanding of current CC surveillance by evaluating the clinical outcomes of high-risk Stage II and Stage III CC survivors following the current SOC guidelines
- We developed an individual-level state-transition model to capture the post-surgery journey of a CC survivor over a lifetime horizon


Simulation of CC Survivors

Simulation of CC Survivors

Inputs

- Patient characteristics
- Disease progression probabilities
- Mortality rates
- Adherence rates
- Surveillance algorithms
- Test performance
- Treatment efficacy

Outputs

- Life Expectancy
- Overall Survival
- Recurrence Free Survival
- Number of Recurrences
- Recurrence Detection Rates

Validation per ISPOR Guidelines

IComparison with Previous Models

Model Features	Kuntz et al., 2020	Rose et al., 2019	Wanis et al., 2019	Rose et al., 2014	Castelli et al., 2007	Borie et al., 2004	Our Model
Adjuvant chemotherapy							
Surveillance algorithms recommended by NCCN guidelines (e.g., CEA, colonoscopy, CT)							
Lead time of tests							
Prevalence of ctDNA							
Disease progression by ctDNA status							
Recurrence treatment							

Stage III

RESULTS:

Internal Validation

RESULTS:

External Validation

5-year Recurrence Detection Rates	Snyder et al. ¹	Our Model
Stage II	16.03%	13.14%
Stage III	31.19%	25.01%

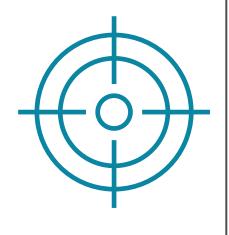
- A real-world study reporting detection rates is used as the benchmark for external validation
- Lower detected recurrence rates predicted from the model can be explained by the uncertainty in these three factors:
 - Different surveillance algorithms
 - Performance of surveillance modalities
 - Adherence to surveillance

RESULTS:

Basecase Analysis: Survival Outcomes

	15-year Recurrence-Free Survival	15-year Overall Survival	Average Life Expectancy
High-risk Stage II	59.0%	60.4%	17.1
Stage III	51.1%	54.9%	16.0

RESULTS:


Basecase Analysis: Recurrence Outcomes (per 10,000 survivors)


15-year Outcomes			Dis	tant	Total		
	Clinical Recurrences	Detected Recurrences	Clinical Recurrences	Detected Recurrences	Clinical Recurrences	Detected Recurrences	
High-risk Stage II	230	180 (78%)	480	330 (68%)	710	510 (72%)	
Stage III	470	390 (83%)	1,350	970 (72%)	1,820	1,360 (75%)	

- In 15 years, overall
 - 28% of recurrences remained undetected for high-risk Stage II
 - 25% of recurrences remained undetected for Stage III

CONCLUSIONS

- Our model enables the evaluation of long-term clinical outcomes in high-risk Stage II and Stage III CC survivors
- Model predictions showed suboptimal recurrence detection rates, highlighting the unmet need in recurrence detection
- Our model could serve as a foundational tool for evaluating current practices and emerging tests to inform clinical decision-making

Corresponding Author:

Sumeyye Samur, PhD ssamur@valueanalyticslabs.com

