

Cost-effectiveness of digital health interventions (remote monitoring) for the management of heart failure in the United Kingdom

Gangar K¹, Yi Y¹, Meiwald A¹, Hirst A¹ ¹Adelphi Values PROVE, Adelphi Mill, Bollington, Cheshire, SK10 5JB, UK.

- changes and reducing hospital readmissions.^{1, 2}
- recently discharged from hospital in the UK:
- assumed to be conducted for a 12-month duration followed by UC.

Time since discharge (months)		Monthly probability for UC
Mortality	0-1	0.0462
	>1-3	0.0331
	>3-6	0.0267
	>6-12	0.0235
	>12-24	0.0187
	>24	0.0147
HF related hospitalisation		0.0350
All cause hospitalisation		0.0875
Sources		1, 5

Hospital readmission cost		Mean frequency per year		6
	Cost (£)	RM	UC	Sources
HFrH	£2,429.02			7
ОСН	£3,685.08	NA	NA	
Medical and home care	Unit cost (£)			
Nurse visits	£46.00	2.00	1.40	8,7
GP visits	£42.00	7.80	6.20	3,7
Specialist visits	£113.00	6.50	6.40	
Nurse specialist visits	£57.00	7.30	6.40	
Emergency room visits	£418.00	0.57	0.60	
Home care funded by government (per day)	£24.84*	0.34	0.33	11, 12
Remote monitoring per patient	Total cost (£)			
Remote monitoring setup	£34.00	One time cost for setup and implementation		
Remote monitoring services licences	£10.00	Per month		9,10
Measurement tools	£122.36	One time cost]
*Derived by deducting 82% of home care cost per day of £138 being	g self-funded.			

> Costs and health outcomes were discounted at 3.5% annually.

- > Life years gained (LY), quality-adjusted life years (QALYs) and total cost were estimated for both RM+UC and UC alone. Incremental outcomes, incremental cost, and incremental cost-effectiveness ratio (ICER) were calculated
- > Deterministic sensitivity analysis (DSA) and probabilistic sensitivity analysis (PSA) were conducted to assess model robustness and address uncertainties in input parameters. Scenario analyses were conducted, including a societal perspective, variations in patients' starting age, and RM duration to account for model variability.

> In the base case, RM cost £1,586 per patient more than UC but yielded 0.13 additional QALYs per patient, producing an ICER of £12,588 per QALY (Table 4). > Using 95% CI for RR from the meta-analysis⁴ or varying other parameter values by ±20%, DSA found the main cost driver to be HCRU for RM and UC

PSA results were consistent (mean ICER of £13,139), although there was some uncertainty (Figure 4). RM demonstrated, at a willingness-to-pay (WTP) > The scenario analyses showed that all scenarios explored generated an ICER less than the WTP of £20,000/QALY. The ICER improved when the duration of RM was extended to 5 years or patients started RM at a younger age. When considering the societal perspective, ICER increased by 27% but was still

	RM	UC	Incremental (RM vs UC)
ted outcomes			
LYs	3.94	3.72	0.22
QALYs (patients)	2.25	2.12	0.13
ted costs			
Hospitalisation costs	£12,835	£12,392	£442
Medical care cost	£6,743	£5,962	£781
Remote Monitoring costs	£269	£0	£269
Home care cost government funded	£936	£844	£93
Total costs	£20,784	£19,198	£1,586
ICER (Cost/LY)	—	—	£7,175
ICER (Cost/QALY)	_	—	£12,588

> RM is a cost-effective strategy at a WTP of £20,000/QALY. DSA and PSA showed the result is robust, with uncertainty due to HCRU rather than relative

> Scenario analysis affirmed RM's cost-effectiveness and potential to enhance patient quality of life even when treatment duration is increased and age for patient population is lowered.

> These findings emphasize the potential advantages of incorporating RM as a standard strategy in managing HF, which can lead to improved clinical outcomes and quality of life over the long term. Comparative studies in the UK and Europe supported RM's cost-effectiveness.^{1,13} > Strengths of the study included efficacy based on a recent meta-analysis and a thorough sensitivity analysis. However, limitations such as short-term data reliance, patient compliance assumptions, and parameter uncertainty should be considered. The results need to be interpreted with caution as they are based on the assumption of a 100% uptake of the RM programme.

References:

1. Pandor, A., Thokala, P., Gomersall, T., et al. 2013. Home telemonitoring or structured telephone support programmes after recent discharge in patients with heart failure: systematic review and economic evaluation. Health Technol Assess, 17, 1-207, v-vi.; 2. Vestergaard, A. S., Hansen, L., Sorensen, S. S et al. 2020. Is telehealthcare for heart failure patients cost effective? An economic evaluation alongside the Danish TeleCare North heart failure trial. BMJ Open, 10, e031670.; 3 Cleland, J. G., Louis, A. A., Rigby, A. S., et al. 2005. Noninvasive home telemonitoring for patients with heart failure at high risk of recurrent admission and death: the Trans-European Network-Home-Care Management System (TEN-HMS) study. J Am Coll Cardiol, 45, 1654-64; 4. Elbadawi, A., Tan, B. E., Assaf, Y., et al. 2022. Digital health intervention in patients with recent hospitalization for acute heart failure: A systematic review and meta-analysis of randomized trials. Int J Cardiol, 359, 46-53.; 5. Solomon, S. D., Dobson, J., Pocock, S., et al. 2007. Influence of Nonfatal Hospitalization for Heart Failure on Subsequent Mortality in Patients With Chronic Heart Failure. Circulation, 116, 1482-1487.; 6. Cowie, M. R., Simon, M., Klein, L. et al. 2017. The cost-effectiveness of real-time pulmonary artery pressure monitoring in heart failure patients: a European perspective. Eur J Heart Fail, 19, 661-669.; 7. National Schedule of NHS Costs 2021/22 (https://www.england.nhs.uk/publication/2021-22-national-cost-collection-data-publication/); 8. Boyne, J. J., Di Van Asselt, A., Gorgels, A. P., et al. 2013. Cost-effectiveness analysis of telemonitoring versus usual care in patients with heart failure: The TEHAF-study. Journal of Telemedicine and Telecare, 19, 242-248.; 9. HEALTHTECH, L. Luscii Remote Patient Monitoring [Online]. GOV.UK Digital Marketplace Available: https://www.applytosupply.digitalmarketplace.service.gov.uk/gcloud/services/150331699025470 [Accessed 22/08/2023 2023].; 10. Vestergaard, A. S., Hansen, L., Sorensen, S. S., et al. 2020. Is telehealthcare for heart failure patients costeffective? An economic evaluation alongside the Danish TeleCare North heart failure trial. BMJ Open, 10, e031670.; 11. Jones, K. C., Weatherly, H., Birch, S., et al. 2023 Unit Costs of Health and Social Care 2022 Manual. Technical report Personal Social Services Research Unit (University of Kent) & Centre for Health Economics (University of York), Kent, UK doi:10.22024/UniKent/01.02.100519. 12. Tchalla, A., Marchesseau, D., Noëlle Cardinaud, N., et al. Effectiveness of a home-based telesurveillance program in reducing hospital readmissions in older patients with chronic disease: The eCOBAHLT randomized controlled trial. Journal of Telemedicine and Telecare 2013:1-8; 13. Grustam, A. S., Severens, J. L., De Massari, D., et al. 2018. Cost-Effectiveness Analysis in Telehealth: A Comparison between Home Telemonitoring, Nurse Telephone Support, and Usual Care in Chronic Heart Failure Management. Value Health, 21, 772-782

PROVE^{*} Expertise in Access and Value Evidence Outcomes

EE214

Scenario	ICER(£)	% change from base case
	£12,588	-
	£15,933	27%
	£15,044	19.51%
	£12,668	0.64%
	£12,544	-0.35%
	£12,586	-0.02%
	£12,588	0.00%
	£10,917	-13.28%
	£13,746	9.20%
	£14,536	15.47%
	£11,520	-8.48%
months	£10,734	-14.73%
s telekit, development and cost of	£11,360	-9.75%
of developing and £ 6.85 as monthly elekit charge as base case	£11,426	-9.23%
	£11,066	-12.09%
	£13,418	6.60%