

Cost-effectiveness of cemiplimab plus chemotherapy versus pembrolizumab plus chemotherapy as the first-line treatment for advanced non-small cell lung cancer

Harrison College of Pharmacy

Xiangzhong Xue, MS; Surachat Ngorsuraches, PhD; Jingjing Qian, PhD; Auburn University Harrison College of Pharmacy, Auburn, AL, USA

PT33

BACKGROUND

- Lung cancer is the leading cause of cancer death in the U.S., comprising about 1 in 5 of all cancer deaths.¹ Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with approximately 70% of patients diagnosed at an advanced or metastatic stage.^{2,3}
- Immunotherapy has notably improved survival for advanced NSCLC patients, yet its high treatment costs pose significant financial burdens on both patients and the healthcare system.^{4.6}
- Pembrolizumab, as a programmed cell death protein 1 (PD-1) receptor inhibitor, combined with chemotherapy (PEM-CHEM), has been considered the preferred first-line treatment for advanced NSCLC patients from a U.S. healthcare perspective.⁷
- Cemiplimab, as a new generation of PD-1 inhibitor, combined with chemotherapy (CEM-CHEM) is a new treatment for advanced NSCLC.

OBJECTIVE

To evaluate the cost-effectiveness of CEM-CHEM versus PEM-CHEM as the first-line treatment for patients with advanced NSCLC from a U.S. healthcare payer perspective.

METHODS

Model Structure

From the healthcare payer perspective, we constructed a partition survival model (PSA) to simulate costs, quality of life, toxic effects, disease progression, and survival for advanced NSCLC patients treated with CEM-CHEM and with PEM-CHEM (Figure 1). We utilized monthly time units and a 10-year overall time horizon.

PFS: progression-free survival PD: processed disease

Survival and Cost Inputs

The overall survival (OS) and PFS transformed probabilities for patients treated with CEM-CHEM and PEM-CHEM were derived from EMPOWER-Lung 3, KEYNOTE-407, and KEYNOTE-189 trials, respectively.⁸⁻¹⁰ Kaplan-Meier (KM) survival curves were extracted and modeled with best-fitted parametric models among exponential, Weibull, Gamma, Gompertz, log-logistic, and log-normal distributions.

- The direct medical expenses, including costs of therapeutic drugs, intravenous injection administration, follow-up care, managing severe adverse events (AEs), and death-related expenses, were obtained from the literature.¹¹⁻¹⁷
- ➤ The weighted average of cost and disutility associated with grade ≥ 3 AEs with more than 5% incidence in updated clinical trial reports were calculated and inputted in the PSA model.

Table 1: Associated costs and disutility of adverse events

Adverse Event Probability ⁸⁻¹⁰		Disutility ¹⁸⁻²⁰	Cost in 2024 USD ^{21,22}	
CEM-CHEM				
Anemia	0.109	-0.073	26104	
Neutropenia	0.064	-0.35	22137	
PEM-CHEM (Nonsq	uamous)			
Anemia	0.19	-0.073	26104	
Diarrhea	0.052	-0.22	21272	
Asthenia	0.067	-0.29	1195	
Neutropenia	0.168	-0.35	22137	
PEM-CHEM (Squan	10us)			
Anemia	0.158	-0.073	26104	
Thrombocytopenia	0.083	-0.108	29245	
Neutropenia	0.23	-0.35	22137	
Weighted Average				
CEM-CHEM		0.0304	4262	
PEM-CHEM*		0.122	10880	

*: Squamous and non-squamous NSCLC are weighted as 0.429 and 0.571 (same histology distribution in EMPOWER-Lung 3 trial for CEM-CHEM)

Analysis

- Total costs and total quality-adjusted life-years (QALYs) gained of CEM-CHEM and PEM-CHEM, and incremental cost-effectiveness ratio (ICER) were calculated.
- In scenario analysis 1, the incidence of severe AEs for PEM-CHEM and CEM-CHEM were derived in the same follow-up period in three trials^{23,24} In scenario analysis 2, the extrapolated OS curve after 60 months using real-world advanced NSCLC survival rates from the U.S. Surveillance, Epidemiology, and End Results (SEER) dataset were also used to test the uncertainties of the results.²⁵
- One-way deterministic sensitivity analysis of cost, health utilities, and severe AEs-related disabilities, and probabilistic sensitivity analysis with 10,000 simulations were performed.

RESULTS

The base-case and sensitivity analyses consistently showed that CEM-CHEM was a dominant alternative, compared to PEM-CHEM (Table 1).

Table 1: Base-case and scenario sensitivity analyses results

	Treatment	Total cost (\$)	Total QALYs	Incremental cost (\$)	Incremental QALY	ICER (\$/QALY)
ase-case	PEM-CHEM	232,843	1.709	_	_	_
	CEM-CHEM	202,167	1.728	-30,676	0.018	-1,694,882
cenario 1	PEM-CHEM	237,170	1.713	_	_	_
	CEM-CHEM	202,167	1.727	-30,521	0.014	-2,188,250
cenario 2	PEM-CHEM	230,947	1.693	_	_	_
	CEM-CHEM	201,863	1.725	-29,084	0.032	-910,013

RESULTS

One-way deterministic sensitivity analysis showed that the disutility of AEs for PEM-CHEM, the cost of PEM and CEM, and the utility in PFS stage significantly influenced ICER results (Figure 4).

Figure 4: Tornado diagram of one-way sensitivity analyses

Figure 5: The probabilistic sensitivity analysis scatter plot

DISCUSSION

- Our study showed that using a CEM-CHEM regimen would result in lower costs and more QALY gained than using a PEM-CHEM regimen as a first-line treatment for patients with advanced NSCLC in the U.S.
- Additionally, the greater QALYs gained with CEM-CHEM were primarily due to its better safety profile, as fewer severe AEs were observed in clinical trials.
- However, the uncertainties of the results due to the disutility of AEs for PEM-CHEM, the costs of PEM and CEM, and the utility in the PFS stage should be further examined.

CONCLUSION

Based on the CEA results, CEM-CHEM is a dominant treatment regimen, compared to PEM-CHEM for patients with advanced NSCLC from a U.S. healthcare perspective.

REFERENCE AND SUPPLIMENTAL MATERIALS

