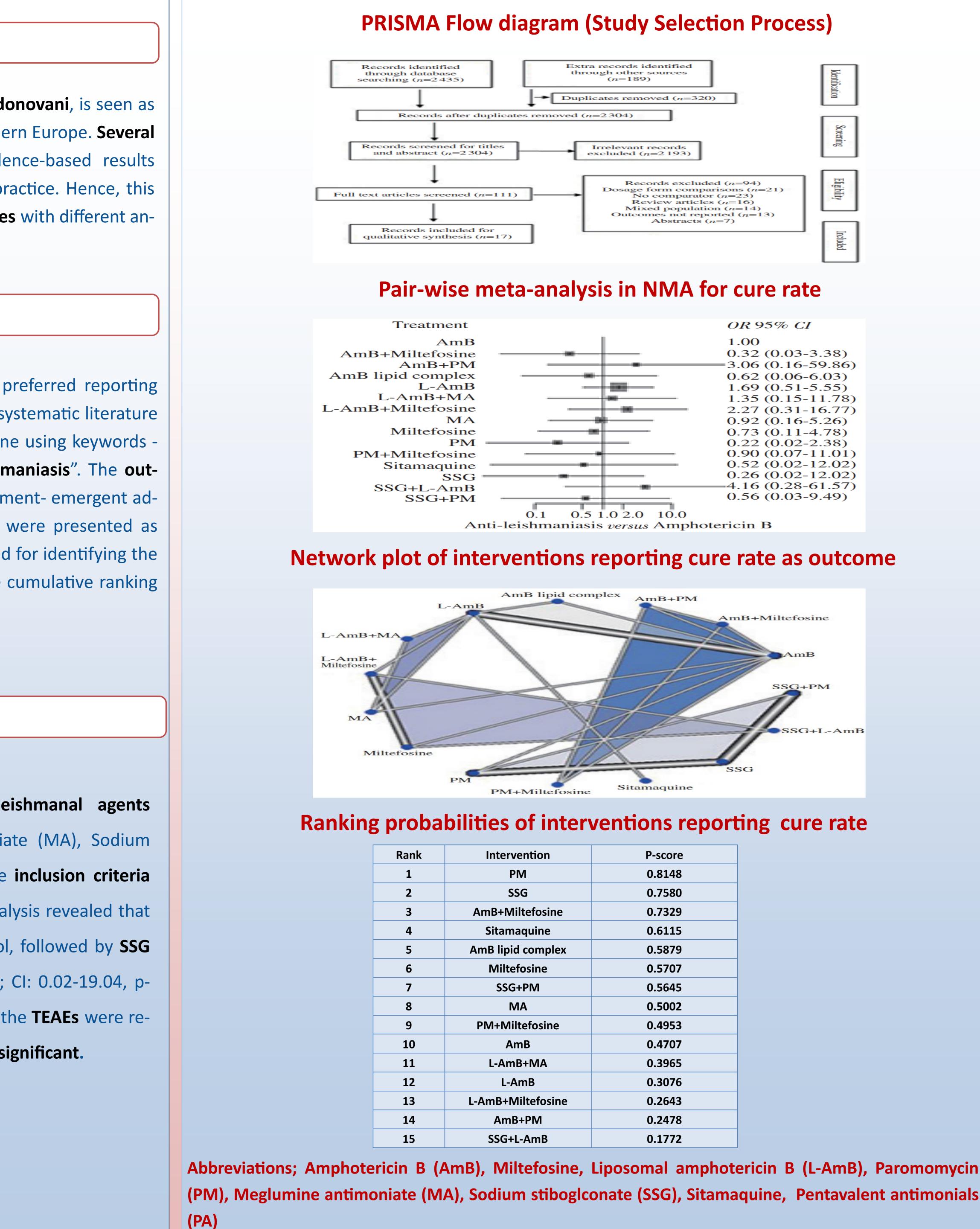


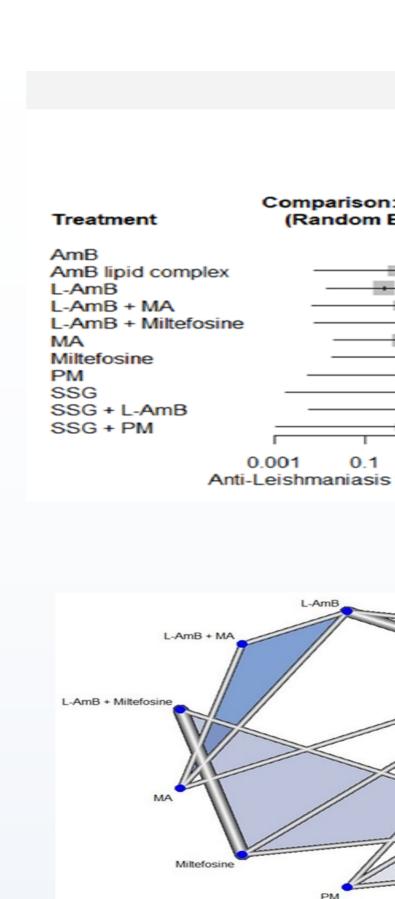
Background and Aim

Visceral leishmaniasis (VL) or kala-azar, caused by parasite Leishmania (L.) donovani, is seen as a neglected endemic in Asia, East and North Africa, South America, and Southern Europe. Several drugs have been tested in visceral leishmaniasis (VL) globally; however, evidence-based results comparing their safe and effective use are **not available** for use in clinical practice. Hence, this study aimed to provide a comparative analysis of efficacy and safety outcomes with different antileishmanial agents used in VL.

Methodology


The current review was performed and reported in accordance with the preferred reporting items for systematic reviews and network meta-analyses (PRISMA-NMA). A systematic literature search in PubMed/Medline, EMBASE, Cochrane, and Google Scholar was done using keywords -"randomized controlled trials (RCTs)", "antileishmanial" and "visceral leishmaniasis". The outcomes included were cure rate, overall withdrawals, relapse rate, and treatment- emergent adverse events (TEAEs). Effect estimates through frequentist NMA approach were presented as odds ratio (OR) with 95% confidence interval (CI). Rankogram plots were used for identifying the 'best intervention' based on p- scores obtained using the surface under the cumulative ranking (SUCRA). The risk of bias was evaluated by using Pedro Scale.

Results


Seventeen RCTs with 5,143 VL patients who received different antileishmanal agents *Amphotericin B, Miltefosine, Paromomycin (PM), Meglumine antimoniate (MA), Sodium stibogluconate (SSG), Sitamaquine, Pentavalent antimonials (PA)+, met the inclusion criteria and were included. For efficacy outcome, cure rate, the NMA rankogram analysis revealed that **PM *p-score= 0.8148+** had a **highest probability** of being **best** in the pool, followed by SSG *OR: 0.82; CI: 0.24-2.79, p-score=0.7580+, AmB + Miltefosine *OR: 0.66; CI: 0.02-19.04, pscore= 0.7329+ as compared to remaining treatments; however, the most of the TEAEs were reported with Sitamaquine. Meanwhile the differences were statistically non-significant.

Efficacy and safety of pharmacotherapeutic interventions used in visceral leishmaniasis: A systematic review and network meta-analysis of randomized clinical trials Gautam Sahu¹, Aamir Bashir¹, Ishfaq Rashid^{1,2}, Pramil Tiwari^{*1}

¹Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar Mohali, 160062, Punjab, India. ²M.M. College of Pharmacy, M. M. University Ambala, India.

P-score
0.8148
0.7580
0.7329
0.6115
0.5879
0.5707
0.5645
0.5002
0.4953
0.4707
0.3965
0.3076
0.2643
0.2478
0.1772

Intervention	P-score	Rank	Intervention	P-score	Rank
L-AmB	0.6953	1	L-AmB+MA	0.9104	1
AmB lipid complex	0.5756	2	SSG+L-AmB	0.8644	2
SSG+PM	0.5511	3	AmB	0.7182	3
L-AmB+MA	0.5438	4	MA	0.7008	4
MA	0.5374	5	L-AmB+Miltefosine	0.5805	5
PM	0.5345	6	L-AmB	0.5131	6
SSG	0.4832	7	Miltefosine	0.3752	7
AmB	0.4585	8	AmB lipid complex	0.2910	8
Miltefosine	0.3957	9	PM	0.2540	9
L-AmB+Miltefosine	0.3931	10	SSG+PM	0.1637	10
SSG+L-AmB	0.3317	11	SSG	0.1288	11

Conclusion

•The present study has evaluated the multiple available treatment options recommended in visceral leishmaniasis management and provided the effect size estimates despite the absence of head-tohead clinical studies.

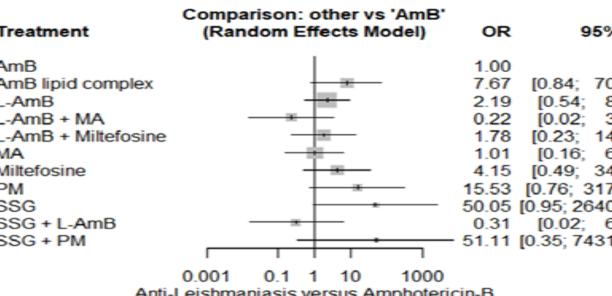
•Paromomycin reported the advantage in comparison to other agents in achieving higher cure rates. ·L-AmB plus MA combination was associated with high relapse rates while L-AmB alone reported

the maximum SEAs.

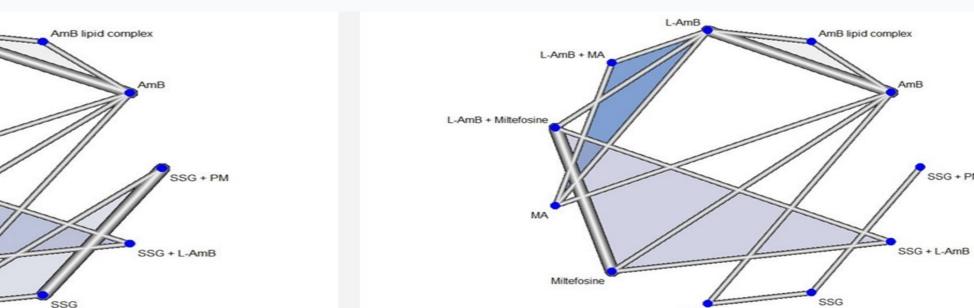
•Future research with direct head-to-head RCTs and timely update of new findings is warranted to further strengthen these results.

References

1. Wamai RG, Kahn J, McGloin J, Ziaggi G. Visceral leishmaniasis: A global overview. J Glob Health Sci 2020; 14: 2(1).


systematic review. J Trop Med 2021; 2021: 8629039.

C058


mproving nealthcare decisions

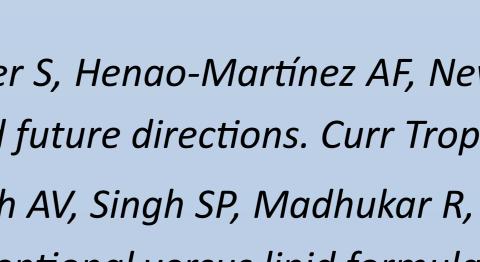
Pair-wise meta analysis in NMA SEAEs **Relapse rate**

	1.00		An An
	0.59		L-A L-A
		[0.01; 684.82] [0.02; 19.59]	L-A MA
	0.66	[0.02; 210.13] [0.01; 78.65]	Mil PN
	- 3.96	[0.00; 472.13] [0.01; 2633.92]	SS
		[0.00; 298.60]	SS
0.1 1 10 100 asis versus Amphoteri			

Network Plot

Ranking Probabilities

PEDro Checklist


Authors, year	Total score
Seaman, 1993	7
Jha, 1998	7
Thakur, 2000	7
Sundar, 2002	7
Sundar, 2004	7
Sundar, 2007	7
Sundar, 2008	7
Sundar, 2010	7
Hailu, 2010	7
Sundar, 2011	7
Musa, 2012	7
Sundar, 2014	7
Wasunna, 2016	7
Rahman, 2017	7
Romero, 2017	7
Borges, 2017	7
Goswami, 2020	7

2. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep 2021; 8(2): 121-132.

3. Sundar S, Mehta H, Suresh AV, Singh SP, Madhukar R, Murray HW. Amphotericin B treatment for Indian visceral leishmaniasis: Conventional versus lipid formulations. Clin Infect Dis 2004; 38(3): 377-383.

4. Pokharel P, Ghimire R, Lamichhane P. Efficacy and safety of paromomycin for visceral leishmaniasis: A

Poster-CO58, ISPOR-2023

