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• We allowed for prognosis to differ by histology via a histology-specific random 

effect to mitigate confounding due to imbalances in histology. 

• The model assumes that (i) relative treatment effects are constant across 

histologies; (ii) histologies are exchangeable; (iii) the distribution of prognostic 

factors within each histology is similar between basket trials; and (iv) there is 

overlap in included histologies between the two trials.

• We simulated exponentially-distributed survival data for two single-arm basket 

trials, one for the control (𝑛𝐶 = 200) and the other for the treatment (𝑛𝑇 = 200) 

with imbalances between the two trials in the distributions across 𝐾 = 8
prognostically important histologies. 

• Using 20 pairs of simulated single-arm basket trial datasets, we demonstrated 

the impact of partial pooling on survival curve estimates under this comparative 

BHM and assessed the model’s ability to reduce bias in the treatment effect 

estimate vs a simple pooling approach.

• Basket trials are increasingly being used to investigate novel therapies targeting 

rare cancer mutations common to multiple histologies.1,2

• Analyses of basket trials for histology-independent therapies (HIT) often employ 

complete pooling of information across histologies to improve power (assuming 

that outcomes are homogenous across histologies), or no pooling whatsoever.2

• However, a third option gaining attention is the application of Bayesian 

hierarchical models (BHM) to allow for a middle-ground—a partial pooling of 

information across histologies—with the amount of pooling dependent on the 

degree of between-histology heterogeneity.2-6

• In a recent appraisal by the National Institute for Health and Care Excellence, 

the evidence review group considered BHMs to be a useful tool for 

characterizing heterogeneity for binary response outcomes for larotrectinib in 

neurotrophic tyrosine receptor kinase-fusion positive tumors and expressed 

receptiveness to future use of the method for survival endpoints.4

• In previous work, we explored the extension of a BHM method for binary 

response endpoints proposed by Murphy et al5 to an unanchored indirect 

treatment comparison (ITC) setting.6

Figure 2. BHM survival curves with 95% CrIs vs Kaplan-Meier 

survival curves by histology

Figure 1. BHM vs simple pooled treatment effect estimates 

(posterior means) and 95% CrIs for 20 pairs of simulated datasets 
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Background

Objective

• This work aimed to further build on our earlier ITC method,6 extending it to the 

survival setting and allowing for unanchored ITCs between the treatment arms 

of two basket trials (or multi-histology datasets assembled from multiple data 

sources) for survival endpoints.

• Using simulated data, we aimed to demonstrate how the method can: 

• Reduce bias relative to comparisons of pooled outcomes for HITs which do 

not account for potential confounding due to imbalances in histology

• Preserve limited power through partial pooling of information across 

histologies

Methods

Results (cont.)

• We propose a BHM approach for performing ITCs between HITs for 

survival endpoints.

• The approach is implementable using individual patient data or 

pseudo-individual patient data constructed from aggregate data 

reported by histology for two basket trials (or multi-histology 

datasets assembled from multiple data sources).

• We demonstrated that the approach has the potential to reduce bias 

in treatment effect estimation relative to a complete pooling 

approach and improve precision/power relative to a no-pooling 

approach.

• By partially pooling information across histologies, the modelling 

approach can improve precision of estimates when between-

histology heterogeneity is modest.

• The method also allows for incorporation of informative priors where 

relevant information is available.

• Nonetheless, care still needs to be taken to assess the plausibility of 

the between-histology heterogeneity assumptions used in the 

BHM.2,5

Conclusions

Methods (cont.)

• For 𝑖 = 1,… , 𝑛𝐶 + 𝑛𝑇 patients and 𝑘 = 1,… , 𝐾 tumor histologies:

𝑇𝑖
∗ = min 𝑇𝑖 , 𝐶𝑖

𝑇𝑖 ∼ Exponential(𝜆𝑖)

• The exponential hazard rate, 𝜆𝑖, depends on the treatment indicator, 𝑎𝑖, and 

the histology-specific random effect 𝛽𝑘 according to:  

ln 𝜆𝑖 = 𝜇 + 𝛿𝑎𝑖 + 𝛽𝑘(𝑖)

𝛽𝑘 ∼ 𝑁(0, 𝜎2)

• With treatment indicator 𝑎𝑖 defined as:

𝑎𝑖 = ቊ
0 if 1 ≤ 𝑖 ≤ 𝑛𝐶
1 if 𝑛𝑐 + 1 ≤ 𝑖 ≤ 𝑛𝐶 + 𝑛𝑇

• The parameter 𝜇 is an intercept term (log hazard rate for the control group), 𝛿
is the relative treatment effect (log hazard ratio) for treatment vs control, and 

𝜎2 is the histology random-effect variance.

• We simulated 20 datasets under an exponential survival model with parameter 

inputs 𝜇 = −1.8, 𝛿 = −0.5, and 𝜎 = 0.5. We set it so that the treatment group 

tended to have more patients with poor-prognosis histologies than the control 

group. Censor time was 𝐶𝑖 = 12 for all 𝑖.

• We used weakly informative priors for 𝜇, 𝛿, and 𝜎 which: 

• Assume that median survival in the control arm is between 2 and 12 months 

with 95% probability

• Assume that the hazard ratio is between 0.2 and 5 with 95% probability

• Put greater weight on random-effect standard deviation values closer to 

zero and non-trivial weight on much larger values following published 

recommendations7

• We performed posterior inference using Markov chain Monte Carlo 

implemented using Stan.8 Markov chain Monte Carlo convergence was 

assessed via 𝑅 statistics.9

• Due to modest estimated between-histology heterogeneity, the BHM partially 

pooled information across histologies. 

• The interquartile range for the posterior medians for 𝜎 across the 20 

simulations was 0.31 to 0.42, suggesting that the BHM was tending toward 

underestimating the true amount of heterogeneity.

• Figure 1 shows the treatment effect estimates (log hazard ratios) and 95% 

credible intervals (CrI) for the BHM compared with the simple pooling 

approach. 

• 95% CrI for the log hazard ratio under the BHM captured the true effect in 
19 of the 20 simulated datasets in contrast to 8 of 20 for simple pooling. 

• Nonetheless, while outperforming simple pooling, the BHM estimates were 
still attenuated relative to the true log hazard ratio (dotted line). Abbreviations (Figures 1 and 2): BHM, Bayesian hierarchical model; HR, hazard ratio;

CrI, credible interval
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Results

• Figure 2 shows the impact of BHM partial pooling on estimates of the survival 

curves and 95% CrIs for each histology.

• CrIs were narrower for histologies with more events.

• Borrowing of information across histologies resulted in improved precision.

• The BHM decreased estimates toward the average. More shrinkage 

occurred where there was little information (few events) or where Kaplan-

Meier curves were further from the average (e.g., for histologies 1, 2 and 8) 

which improved stability/mitigated overfitting.

• Partial pooling via the BHM yielded estimated survival curves for the 

histology 1 treatment arm and histology 8 control arm despite there being no 

patients in these groups. 
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