

Cost-effectiveness of pretomanid-based regimen for treatment of highly drug-resistant tuberculosis in a high-income country

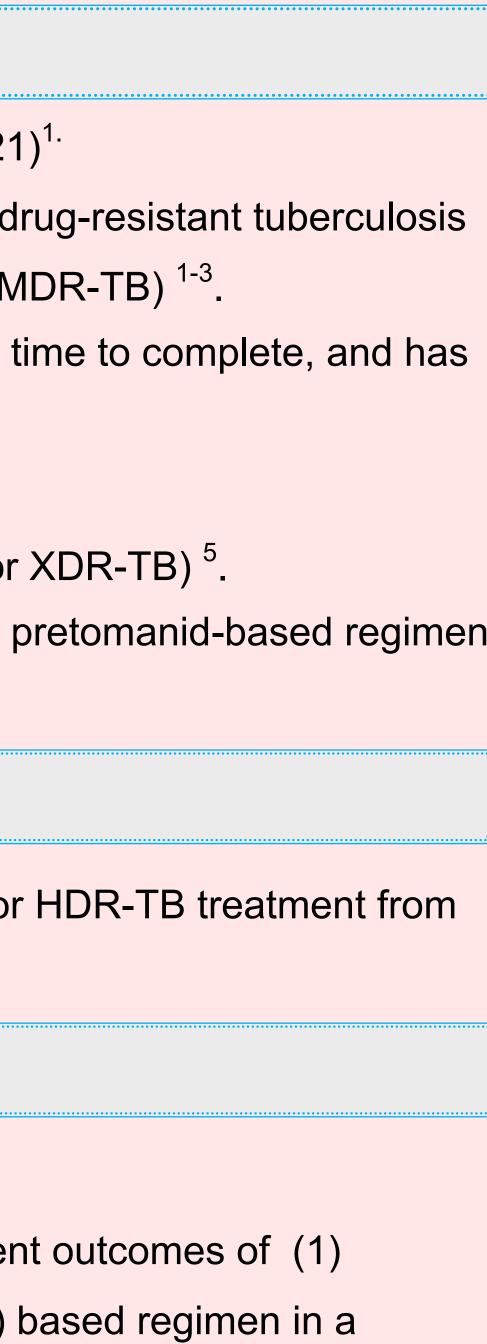
Background

- **u** Tuberculosis (TB) is the leading deadliest infectious disease globally (1.6 million in 2021)^{1.}
- Highly drug-resistant tuberculosis (HDR-TB) comprises pre-extensively or extensively drug-resistant tuberculosis (XDR-TB) and treatment-intolerant or nonresponsive multidrug-resistant tuberculosis (MDR-TB)¹⁻³.
- **n** Treatment for HDR-TB with bedaquiline-linezolid-based regimen is costly, takes a long time to complete, and has life-threatening adverse effects ²⁻⁴.
- Lower treatment success rate (59% for MDR-TB and 52% for XDR-TB)
- ◆ Treatment cost per case in the US (420,000 USD for MDR-TB and 801,000 USD for XDR-TB) ⁵.
- Recent clinical findings reported improvement in clinical outcomes of HDR-TB with the pretomanid-based regimen (with shortened treatment duration) ^{1,4}.

Objective

This study aimed to evaluate the cost-effectiveness of the pretomanid-based regimen for HDR-TB treatment from the perspective of healthcare provider in the US.

Methods


Decision model

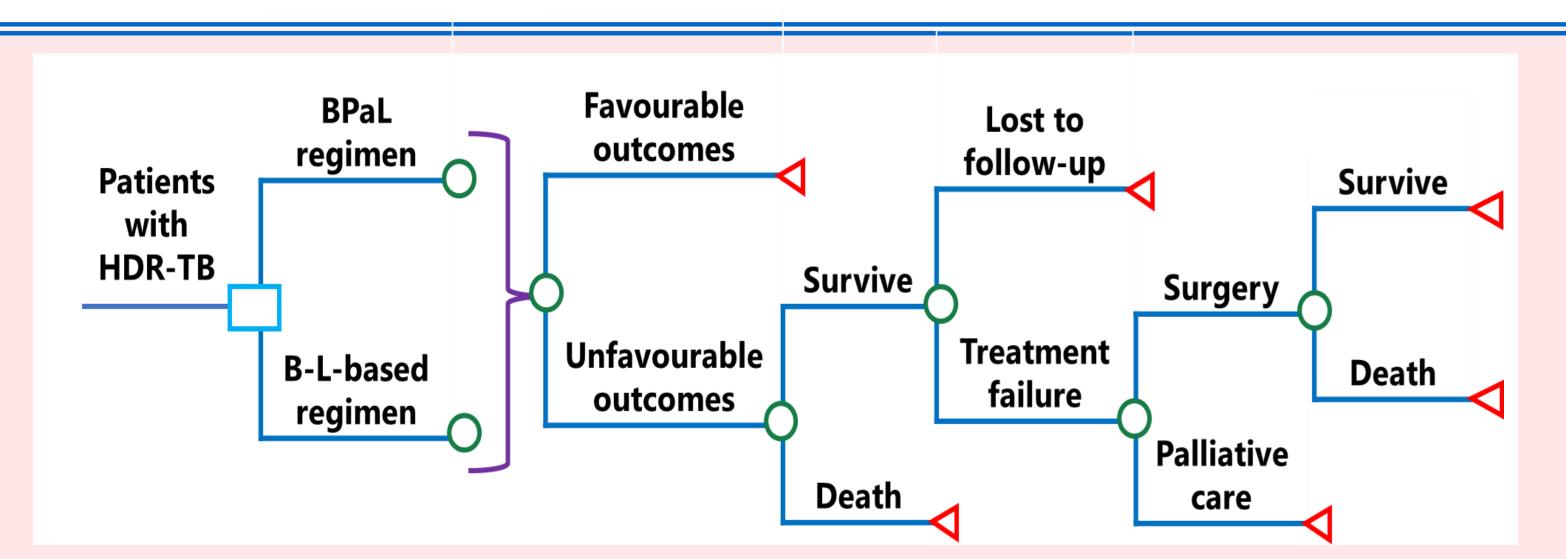

A 2-year decision-analytic model (Fig 1) was constructed to simulate potential treatment outcomes of (1) bedaquiline-pretomanid-linezolid (BPaL) regimen), and (2) bedaquiline-linezolid (B-L) based regimen in a hypothetical cohort of adult patients with HDR-TB.

Table 1 Model inputs ⁵⁻²⁰						
Parameters	Base-case value	Range	Distribution type			
Clinical inputs						
Favourable outcome rate of B-L-based regimen	65.12%	52.10%-78.14%	Beta			
Relative risk ratio of favourable outcome with BPaL versus B-L-based regimen	1.35	1.13-1.60	Lognormal			
Mortality rate among HDR-TB patients with unfavourable outcomes	55.00%	44.00%-66.00%	Beta			
Treatment failure rate among survived HDR-TB patients with unfavourable outcomes	38.89%	31.11%-46.67%	Beta			
Proportion of patients who underwent surgery among treatment failure patients	63.41%	50.73%-76.09%	Beta			
Mortality rate among patients who underwent surgery	7.69%	6.15%-9.23%	Beta			
Utility inputs						
Disutility						
HDR-TB	0.333	0.224-0.454	Triangular			
TB treatment success	0.120	0.096-0.144	Uniform			
Surgery	0.490	0.392-0.588	Uniform			
Palliative care	0.660	0.528-0.792	Uniform			
Lost to follow-up	0.660	0.528-0.792	Uniform			
HDR-TB patient age (years)	42	23-76	Triangular			
Cost inputs (USD)						
Drug (cost per treatment course)						
B-L based regimen	82,330	65,864-98,796	Gamma			
BPaL regimen	35,100	28,080-42,120	Gamma			
TB outpatient clinic visit (cost per visit)	83	66-100	Gamma			
Number of outpatient clinic visits (days)						
B-L-based regimen	20					
BPaL regimen	8					
Laboratory and imaging tests (cost per treatment course)						
B-L-based regimen	867	694-1,040	Gamma			
BPaL regimen	624	499-749	Gamma			
Cost per case						
Surgery	26,004	20,803-31,205	Gamma			
Palliative care	28,037	22,430-33,644	Gamma			
TB-related mortality	39,588	31,670-47,506	Gamma			

Ginenus Fekadu*, Yingcheng Wang, Joyce HS You

School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Cost-effectiveness and sensitivity analyses

- Primary model outputs were TB-related direct medical cost, disability-adjusted life-years (DALYs), and incremental cost per DALY averted (ICER).
- **n** The clinical, utility and cost parameters of the model retrieved from literature and public data are shown in Table 1.
- **B** Sensitivity analysis was performed to assess the robustness of base-case results.
- One-way sensitivity analysis: to identify influential factors with threshold values.
- Probabilistic sensitivity analysis: to evaluate the uncertainty of all variables simultaneously and was performed in 10,000 Monte Carlo simulations by randomly drawing each of model inputs.

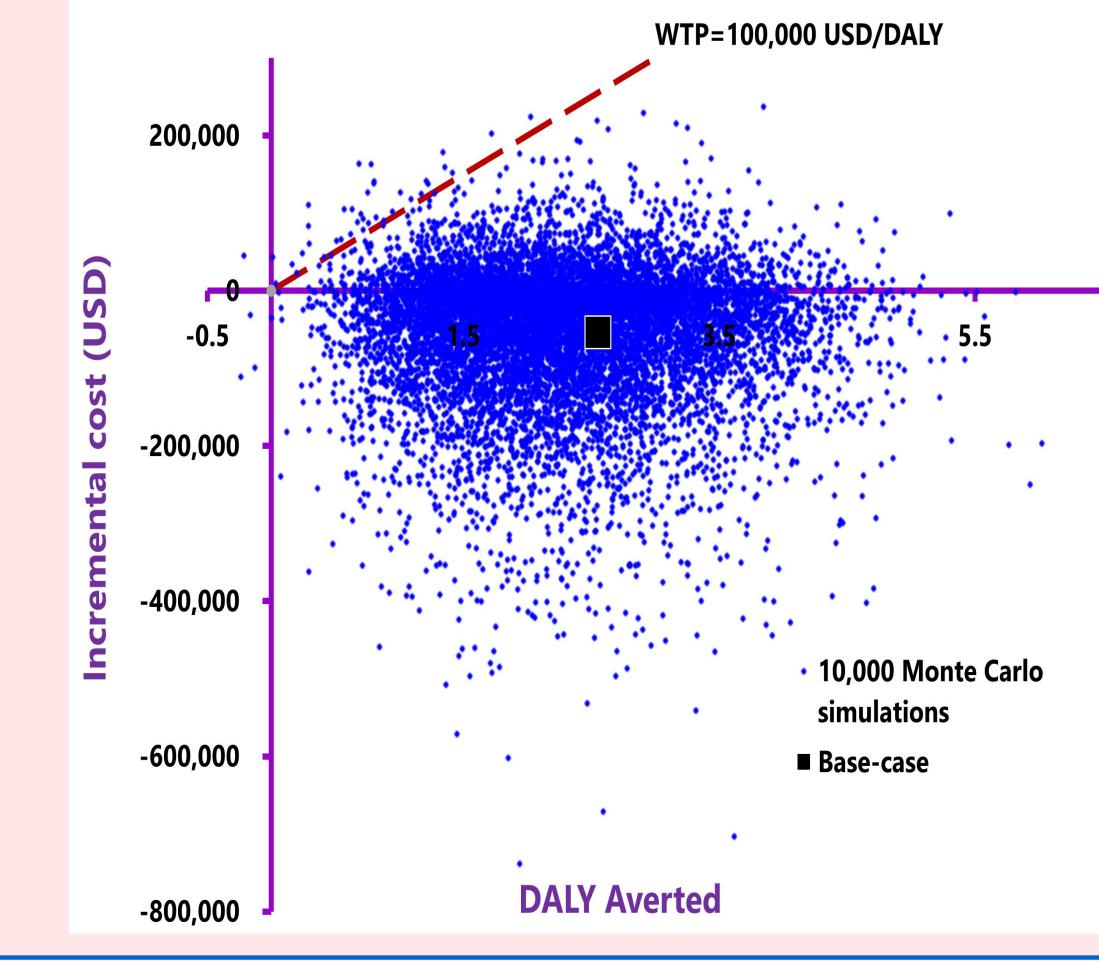
Base-case analysis

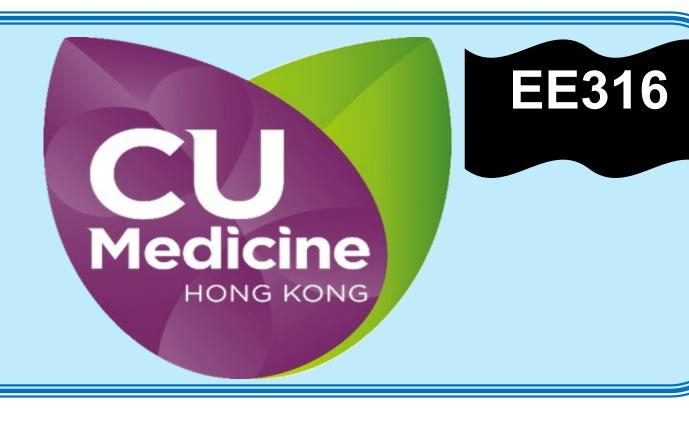
n The BPaL regimen averted 2.5511DALYs and saved cost by USD53,502 when compared to the B-L-based regimen.

Table 2 Results of the base-case analysis					
Treatment strategy	Total direct cost (USD)	Incremental cost (USD)	DALYs	DALY averted	
BPaL regimen	39,283	- 53,502	1.5929	2.5511	
B-L-based regimen	92,785	-	4.1440	_	

Sensitivity analysis

- **n** No influential parameter with threshold value was identified in the one-way sensitivity analysis.
- In the probabilistic sensitivity analysis, the BPaL regimen reduced DALYs by 2.2974 (95%CI: 2.2802-2.3146; p<0.001) with cost saving of USD53,072 (95%CI:USD51,366-USD54,778; p<0.001)
- **•** The BPaL regimen reduced DALYs at lower cost in 75.51% of the time, and averted DALYs at higher cost with ICER less than willingness-to-pay (WTP) threshold (100,000 USD/DALY) in 24.08% of the simulations (Fig 2)




Fig 1 Simplified decisionanalytical model

Results

Fig 2 Scatter plot of the incremental cost against DALY averted by the BPaL regimen versus the B-L-based regimen in

- 0.7 0.6 Ŭ **0**.5 0.4 1 0.3 0.2 -
- **•** The base-case analysis findings showed the BPaL regimen to save cost and avert DALYs in HDR-TB.
- **n** The study findings were consistent with cost-effectiveness analysis of the BPaL regimen (against the current standard of care) for the treatment of XDR-TB in high-burden epidemiological settings (South Africa, Georgia, and Philippines)²¹.
- treatment with BPaL.
- Lower the odds of treatment failure, loss to follow-up and mortality cases.
- The cost-saving of the BPaL regimen was primarily due to:
- Reduction in costs of drug acquisition, outpatient clinic visits and laboratory follow-up.
- Reduction in health service utilization from reduced cases of unfavourable treatment outcomes required to treat treatment failure cases and TB-related mortality costs.
- Inconclusion, the BPaL therapy appeared to be effective and cost-saving for HDR-TB treatment from the perspective of US healthcare provider.

- 1. WHO. Global Tuberculosi
- 2. Conradie F et al. NEJM.
- 3. WHO. Consolidated DR-7
- 4. Conradie F et al. NEJM.
- 5. CDC. Estimates for TB Tr
- 6. Oelofse S, et al. IJTLD. 20
- 7. Chan ED, et al. AJRCCM.
- 8. Salomon JA, et al. Lancet
- 9. Kittikraisak W, et al. Plos
- 10. Fan Q, et al. IJID 2019;78
- 11. Fekadu G, et al. Plos ON
- 12. Goswami ND, et al. NEJN
- 13. Pharmacy checker com. www.pharmacychecker.co

The probability of the BPaL regimen to be cost-effective was higher than the B-L-based regimen throughout the variation of WTP, and it was 99.59% at the WTP threshold of 100,000 USD/DALY (Fig 3).

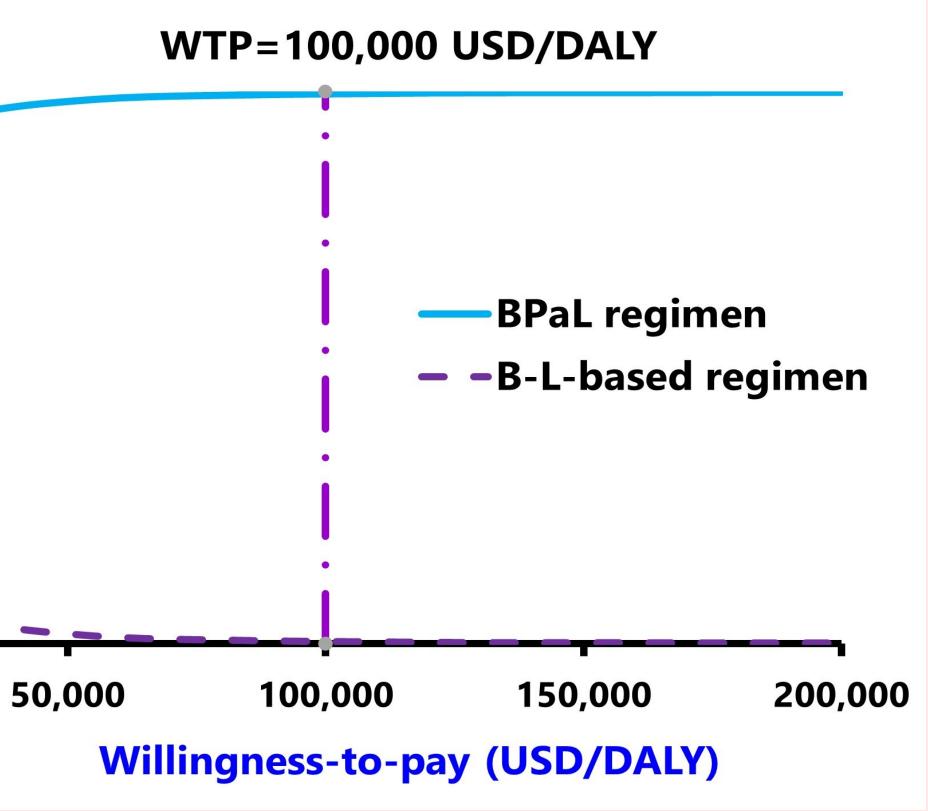


Fig 3 Acceptability curves of the BPaL regimen and the B-L-based regimen to be cost-effective

Discussion and Conclusion

B The averted DALY with the BPaL regimen translated from higher clinical improvement (1.35-fold) of HDR-TB

Refere	nce	?S		
sis Report, 2022 . 2020;382(10):893-902 -TB treatment, 2020/22 . 2022;387(9):810-823. Treatment Costs; 2022. 2021;25(6):453-460. M. 2004;169(10):1103-1109. et Glob. Health 2015;3(11):e712-23. s One. 2012;7(1):e29775. 78:44-49. NE. 2022;17(8):e0272770.	15. 16. 17. 18. 19. 20.	Center for Medicare boratory Fee Schedu Center for Medicare Fee Schedule; 2022	CM. 2019;200(andbook on DR and Medicaid a le; 2022 and Medicaid a . Thorac. Surg. ntern. Med 20	(10):e93-e142. -TB Treatment; 2022 Services. Clinical La- Services. Physician . 2022;115(3):671-77.)18;178(6):820-829.
JM. 2022;387(9):850-852. n. Available from: https:// com				