Impact in health outcomes of anti-PD-(L)1 inhibitors to treat early-stage cancers in Belgium

Background

- In 2020, there were approximately 19.3 million new cancer cases worldwide, projected to rise to 28.4 million by 2040.1 In Belgium, between 2004 and 2018, the number of annual cancer diagnoses increased by 21%.² Early detection and appropriate treatment can reduce the cancer burden, given the higher chance of cure if diagnosed early and treated appropriately³
- Anti-programmed cell death 1/anti-programmed death-ligand 1 (anti-PD-(L)1) inhibitors are mainstay nts for several advanced/me tatic cancers, and their expansion into the early-stage settings is urther changing the treatment paradigm
- Treatment of early-stage tumors with anti-PD-(L)1 inhibitors is linked to significantly better outcomes (eg, improved recurrence-free survival after surgery^{4,5}) and has expanded rapidly
- As part of informing the sustainability of cancer treatment in general, it is crucial to recognize the value of anti-PD-(L)1 inhibitors and to integrate them into health planning as adjuvant/neoadjuvant treatment options

Objectives

 We developed a health outcomes projection tool to assess the health benefits of adopting anti-PD- (L)1 inhibitors in multiple early-stage cancers in Belgium across 5- and 10-year time horizons. More specifically the tool compares the health outcomes between two scenarios: one where anti-PD-(L)1 inhibitors can be used for patients with early-stage disease (world with anti-PD-(L)1 inhibitors) vs a second scenario wher anti-PD(L)1 inhibitors are reserved for patients who develop advanced/ metastatic disease (world withou anti-PD-(L)1 inhibitors)

Methods

- The health outcomes projection tool focuses on 3 high-incidence cancers: melanoma, renal cell carcinoma (RCC), and triple-negative breast cancer (TNBC)
- The tool tracks clinical outcomes throughout the average patient journey in weekly cycles from when they
 initiate adjuvant/neoadjuvant treatment. The model structure and input data are primarily based on the
 cost-effectiveness and budget impact models used for health technology assessments⁶⁻⁹
- · Clinical outcomes estimated include life-years (LY) without event or recurrence and in total, qualityadjusted life-years (QALY), events or recurrences, active treatments for metastatic disease, adverse events (AE), and deaths (total and after first event or recurrence)

Figure 1. Model structure – calculation

Kev: PD-(L)1, programmed cell death 1/programmed death-ligand 1

Figure 2. Model structure - patient journey

Note: The direction of the arrows indicates how patients transi een health states after entering the model

Table 1. General base-case settings and input assumption

Input	Value
Perspective	Belgian healthcare system
Time horizon	5 and 10 years
Discounting for clinical outcomes	1.50%
Tumor sites	Stage III melanoma RCC at increased risk of recurrence following nephrectomy +/- resection of metastatic lesions Locally advanced or early-stage TNBC at high risk of recurrence
Population	The annual target population is distributed evenly throughout the year (assuming new cohorts of patients initiate adjuvant/neoadjuvant treatment each week) 2022 population: 11,564,008 ¹⁰ Growth rate of 0.54% applied to Year 2023 and onwards ¹⁰ Females: 50.72% ¹⁰
Health state transitions	Transitions from recurrence-levent-/disease-free state and from locoregional disease are specific to the treatments received in the adjuvant/neoadjuvant setting. Transitions from the metastatic disease state are specific to the metastatic treatment received
Treatment duration	Treatment duration is specific to the treatment options received either in the adjuvant/neoadjuvant setting or in 1L and 2L metastatic disease setting
Market shares	Market shares for all treatment options in the adjuvant/neoadjuvant setting and 1L and 2L metastatic treatments (conditional on adjuvant/neoadjuvant treatment received) are based on expert opinion
Retreatment with anti-PD-(L)1 agents	 Retreatment with any or the same anti-PD-(L)1 inhibitor is possible immediately after adjuvant treatment completion for melanoma and RCC Retreatment with the same anti-PD-(L)1 inhibitor is possible 1 year after neoadjuvant/adjuvant treatment completion for TNBC
AEs	 Mostly, AEs included are drug-related, Grade 3+ with ≥5% incidence in any treatment arm for multiple treatment settings/lines of therapy AEs and corresponding disutilities are accounted for as one-off events at treatment initiation
Health state utilities	Health state utilities from relevant clinical trials ¹¹⁻¹³ are mapped to local values using Belgian and European algorithms. Age- and sex-related disutilities ¹⁴ are also considered

Key: 1L, first-line; 2L, second-line; AE, adverse event; PD-(L)1, programmed cell death 1/programmed death-ligand 1;

Presented at ISPOR 2023: Boston, MA, USA: May 7-10, 2023

Results

- Of the 10,798 eligible patients over 10 years (2022-2031), 8,295 are estimated to initiate adjuvant/neoadjuvant treatment with anti-PD-(L)1 inhibitors for melanoma, RCC, and TNBC
- Of the 5,174 patients eligible over 5 years (2022-2026), 3,965 are estimated to initiate adjuvant/neoadjuvant treatment with anti-PD-(L)1
- Introducing anti-PD-(L)1 inhibitors in the adjuvant/neoadjuvant setting for melanoma, RCC, and TNBC is anticipated to: Increase by 645 (7%) and 4,154 (13%) the LYs without recurrence over 5 and 10 years, respectivel
- Avoid 404 (25%) and 1,199 recurrences (25%) over 5 and 10 years, respectively
- Prevent 448 (29%) and 1,384 (29%) active treatments in the metastatic setting over 5 and 10 years, respectively
- Avoid 126 (26%) and 663 (29%) post-recurrence deaths over 5 and 10 years, respectivel

Table 2. Patients eligible for adjuvant/neoadjuvant treatment with anti-PD-(L)1 inhibitors in Belgium, as estimated by the health outcomes projection tool

Treatment received	2022	2023	2024	2025	2026	2027–2031	Cumulative
Anti-PD-(L)1 inhibitors*	756	776	796	812	825	4,330	8,295
Non-anti-PD-(L)1 inhibitors*	243	240	238	242	246	1,294	2,503
Total	999	1,016	1,034	1,054	1,071	5,624	10,798

Key: PD-(L)1, programmed cell death 1/programmed death-ligand ' Note: *. in world with anti-PD-(L)1 inhibitors

Figure 3. Patients eligible for adjuvant/neoadjuvant treatment with anti-PD-(L)1 inhibitors and (a clinical outcome

Key: LY, life-year; PD-(L)1, programmed cell death 1/prog d death-ligand 1; QALY, guality-adjusted life-ye

Table 3. Clinical outcomes by year

Outcome	2022	2023	2024	2025	2026	2027–2031	Cumulative	Difference (cumulative)			
Impact -world with anti-PD-(L)1 inhibitors world vs without anti-PD-(L)1 inhibitors											
LYs – recurrence-/ event-/disease-free	2.89	33.08	102.79	197.89	308.83	3,508.51	4,153.99	13%			
LYs – total	-0.20	0.34	11.14	39.52	86.96	1,691.18	1,828.95	4%			
QALYs	-0.39	2.92	18.03	49.39	96.75	1,611.91	1,778.62	5%			
Events or recurrences	-11.08	-54.89	-91.48	-114.95	-131.27	-795.61	-1,199.27	-25%			
Active treatments for metastatic disease	-10.59	-53.63	-98.18	-131.24	-154.48	-935.88	-1,384.00	-29%			
Adverse events	32.40	14.46	-0.13	-9.79	-16.81	-138.57	-118.44	-2%			
Deaths - total	0.62	-3.73	-18.99	-38.54	-57.88	-511.69	-630.19	-25%			
Deaths after first event or recurrence	-0.12	-5.52	-20.58	-40.26	-60.01	-536.45	-662.94	-29%			

Key: LY, life-year; PD-(L)1, programmed cell death 1/programmed death-ligand 1; QALY, quality-adjusted life-year.

References

- 1. Sung H. et al. CA Cancer J Clin. 2021;71(3):209-249.

- Belgian Cancer Registry. Cancer figures. Available at: https://kankerregister.org/Cancer%20Figures. Accessed April 7, 2023.
 World Health Organization. Cancer. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed May 17, 2022.
 European Medicines Agency. OPDIVO: Procedural steps taken and scientific information-after-authorisation. Available at: https://www.ema.europa.eu/en/documents/ procedural-steps-after/opdivo-epar-procedural-steps-taken-scientific-information-after-authorisation_en.pdf. Accessed May 24, 2022.
- European Medicines Agency. KEYTRUDA: Procedural steps taken and scientific information after the authorisation. Available at: https://www.ema.europa.eu/en/documents/ procedural-steps-after/keytruda-epar-procedural-steps-taken-scientific-information-after-authorisation_en.pdf. Accessed May 24, 2022.
- 6. National Institute for Health and Care Excellence (NICE). Pembrolizumab for adjuvant treatment of completely resected stage 3 melanoma [TA766]. Available at: https://www nice.org.uk/guidance/ta766. Accessed February 9, 2023
- 7. National Institute for Health and Care Excellence (NICE). Pembrolizumab for adjuvant treatment of renal cell carcinoma [TA830]. Available at: https://www.nice.org.uk/guidance ta830. Accessed February 9, 2023.
- National Institute for Health and Care Excellence (NICE). Pembrolizumab for neoadjuvant and adjuvant treatment of triple-negative early or locally advanced breast cance [TA851]. Available at: https://www.nice.org.uk/guidance/ta851_Accessed February 9, 2023.

Sensitivity analyses

input variations

- 100% uptake of anti-PD-1/PD-L1 agents in future environment
- 20% increase of target population for all years
 - 20% decrease of target population for all years
- Delayed time to launch of anti-PD-1/PD-L1 agents in future environment No retreatment with anti-PD-1/PD-L1 agents
- Exclude melanoma from pan-tumor results (include RCC and TNBC) Exclude RCC from pan-tumor results (include melanoma and TNBC) Exclude TNBC from pan-tumor results (include melanoma and RCC) Exclude melanoma and RCC from pan-tumor results (include TNBC) Exclude melanoma and TNBC from pan-tumor results (include RCC)

Exclude RCC and TNBC from pan-tumor results (include melanoma

Figure 5. Scenario analysis - impact on deaths after first event or recurrence

- 100% uptake of anti-PD-1/PD-L1 agents in future environment
 - 20% increase of target population for all years 20% decrease of target population for all years
- Delayed time to launch of anti-PD-1/PD-L1 agents in future environment No retreatment with anti-PD-1/PD-L1 agents
- Exclude melanoma from pan-tumor results (include RCC and TNBC) Exclude RCC from pan-tumor results (include melanoma and TNBC) Exclude TNBC from pan-tumor results (include melanoma and RCC) Exclude melanoma and RCC from pan-tumor results (include TNBC) Exclude melanoma and TNBC from pan-tumor results (include RCC) Exclude RCC and TNBC from pan-tumor results (include melanomal

Figure 6. Scenario analysis - impact on number of events/recurrences

- 100% uptake of anti-PD-1/PD-L1 agents in future environment
 - 20% increase of target population for all years
- 20% decrease of target population for all years Delayed time to launch of anti-PD-1/PD-L1 agents in future environment
- No retreatment with anti-PD-1/PD-L1 agents Exclude melanoma from pan-tumor results (include RCC and TNBC) Exclude RCC from pan-tumor results (include melanoma and TNBC) Exclude TNBC from pan-tumor results (include melanoma and RCC) Exclude melanoma and RCC from pan-tumor results (include TNBC) Exclude melanoma and TNBC from pan-tumor results (include RCC) Exclude RCC and TNBC from pan-tumor results (include melanoma)

- SSPWebApplicationPublic/fr/Public/ProductSearch, Accessed March 21, 2023.
- SSPWebApplicationPublic/fir/Eublic/ProductSearch. Accessed March 21, 2023.
 10. Statbel. Structure de la population. Available at: https://statbel.fgov.be/fr/themes/population/structure-de-la-population/#news. Accessed November 23, 2022.
 11. Merck & Co., Inc., Rahway, NJ, USA. A Phase 3, randomized, double-blind, placebo-controlled clinical trial of pembrolizumab (MK-3475) versus placebo after complete resection of high-risk Stage III melanoma: A randomized, double-blind Phase 3 trial of the EORTC melanoma group (KEYNOTE-054). Data on file.
 12. Merck & Co., Inc., Rahway, NJ, USA. A Phase 3, randomized, double-blind, placebo-controlled clinical trial of pembrolizumab (MK-3475) as monotherapy in the adjuvant treatment of renal cell carcinoma post nephrectomy (KEYNOTE-564). Data on file.
 13. Merck & Co., Inc., Rahway, NJ, USA. A Phase III, randomized, double-blind study to evaluate pembrolizumab plus chemotherapy vs placebo plus chemotherapy as neoadjuvant therapy and pembrolizumab vs placebo as adjuvant therapy for triple negative breast cancer (TNBC) (KEYNOTE-522). Data on file.
- 14.Ara R. et al. Value Health. 2010;13(5):509-518.

Raquel Aquiar-Ibáñez¹; Catarina Neves²; Tyler Mantaian³; André Bento Abreu⁴; Demet Sönmez⁵; Arthur Sillah⁶; Gursel Aktan⁶

¹Merck Canada, Inc., Kirkland, QC, Canada; ²Lumanity, Utrecht, Netherlands; ³Lumanity, Bethesda, MD, USA; ⁴MSD Belgium, Brussels, Belgium; ⁵MSD Sweden, Stockholm, Sweden; 6Merck & Co., Inc., Rahway, NJ, USA

9. Institut national d'assurance maladie-invalidité. Pembrolizumab. Arret Royal 01.02.2018 - IV 8090000. Available at: https://webappsa.riziv-inami.fgov.be/

- This health outcomes projection tool can support discussions around investment in anti-PD-(L)1 inhibitors in the adjuvant/ neoadjuvant settings (in both upcoming and already approved uses) and generally inform planning around investment in innovative treatments for early-stage cancers

- Continued reimbursement for anti-PD-(L)1 inhibitors for early-stage melanoma, RCC, and TNBC is crucial to ensure

reducing the number of treatments for metastatic disease

patients and society realize these benefits

Importantly, a long time horizon is needed to fully capture the range of health benefits experienced by patients using anti-PD-(L)1 inhibitors. The results generated by the tool considering 5- and 10-year time horizons are anticipated to be an underestimate of these health benefits

deaths (in total and post-recurrence/event/disease), extending the time patients spend free of recurrences/events/disease, and