Cost-effectiveness Analysis of Pasireotide Long-Acting Release as a Second Line Treatment for Adult Acromegaly Patients

Paiva, Helder, PhD¹; Teloian, Diana, MA²; Tichy, Eszter, MSc²; Schmidt, Fabian, MSc³; Kalinowska, Agnieszka, MSc⁴ ¹Recordati Rare Diseases, São Paulo, Brazil; ²Evidera, Inc, Budapest, Hungary; ³Recordati Rare Diseases, Puteaux, France; ⁴MAHTA INTL, Warsaw, Poland

Objective

This study aims to evaluate the cost-effectiveness of pasireotide versus other second-line pharmacological treatments in the Brazilian public payer setting for adults with acromegaly for whom surgery is not an option or has not been curative and who are inadequately controlled with another somatostatin analogue.

Background

- Acromegaly is a rare hormonal disorder caused by excessive levels of growth hormone (GH) and insulin-like growth factor 1 (IGF-1).¹
- Patients with acromegaly also develop disease-associated comorbidities, including diabetes, hypertension, cardiomyopathy, colon cancer, and sleep apnea²⁻⁴ that impact quality of life⁵ and cause excess mortality.^{1,5}
- The primary treatment option for acromegaly is surgery. However, postoperative remission rate is 66%.⁶
- In case of persistent disease after surgery, medical therapy is recommended. First-generation long-acting release (LAR) somatostatin receptor ligands (SRL) (octreotide, lanreotide) and cabergoline (for patients with modest elevations of IGF-1 and mild signs and symptoms of acromegaly) are recommended as first-line treatments.^{6,7}
- Recommended second-line treatment options are first-generation SRLs, pasireotide⁶ (an injectable second-generation SRL with high binding affinity for human somatostatin receptor subtypes 1, 2, 3, and 5) that impacts GH and IGF-1, and pegvisomant-based regimens (monotherapy and combination with an SRL)⁶ that target only IGF-1 normalization.⁸
- Patients may achieve full control (FC), partial control (PC), or remain in no control (NC) state in terms of biomarker levels as defined in **Table 1**. (Note that updated treatment practice guidelines published in 2014 recommend a more stringent level of GH for FC, <1 µg/l.⁶ However, to be consistent with all efficacy data sources, the model applies a 2.5 µg/I GH cut-off. Treatment effects based on a 1.0 μ g/I GH level were assessed in the scenario).

Table 1. Acromegaly control definitions

Disease control	Biochemical criteria option 1: GH and IGF-1	Biochemical criteria option 2: IGF-1					
Full Control	GH < 2.5 μ g/l and IGF-1 \leq ULN ^{11,21,35}	$IGF-1 \leq ULN^{11,35}$					
Partial Control	Not full control, at least 50% decrease in GH and IGF-1 ⁷	Not full control, at least 50% decrease in IGF-1 ⁷					
No Control	Not full control, not partial control ^{11,21,35}	Not full control, not partial control ^{11,35}					
GH = growth hormone: IGE-1 = insulin-like growth factor 1: UI N = upper limit of normal							

GH = growth normone; IGF-1 = Insulin-like growth lactor 1; ULN = upper limit of norma

Methods

- A hybrid model combining a **six-month decision-tree** (initial) phase followed by a lifetime Markov phase with six-month cycles was designed to show the health and economic outcomes of pasireotide
- All patients enter the model with NC of acromegaly, have failed first-generation SRLs in the previous line, and start receiving a base dose (40mg) of pasireotide or another second-line comparator.
- Disease control is evaluated after three months (first assessment) and six months (second assessment) from second-line therapy initiation during the decision-tree phase.
- Depending on the treatment effects at the assessments, patients enter the Markov phase continuing second-line treatment or transitioning to a subsequent line as described in Figure 1.

2nd line in Markov model includes those with full and partial control. Subsequent treatment state includes patients with full, partial and no control.

[A] transition: patients on 2nd line of therapy can switch to subsequent treatment in case of response loss Note: Path [A] transition probability will be assumed to be 0% in base case

Presented at ISPOR US • May 7–10, 2023 • Boston, MA, US

Methods (Cont'd)

- treatment to achieve better control.
- lanreotide + RT in a subsequent line.
- year.¹⁰
- octreotide.

Model Inputs

Clinical Inputs

- in Table 2 and Table 3.

Table 2. Transition Treatment

Pasireotide

Octreotide max dose Lanreotide max dose

Freatment

- Pasireotide
- Octreotide max dose
- Lanreotide max dose
- Pegvisomant

Pegvisomant + Octreotic Pegvisomant + Lanreotic *All no control patients move to a subsequent line after the first assessment FC = full control; NA = not applicable; NC = no control; PC = partial control

Mortality

radiotherapy (2.10).¹⁷

• Patients remain on second-line treatment until death if they achieve FC or PC during the six-month decision tree (initial) phase, whereas patients with uncontrolled disease move to a subsequent line. During the initial phase, patients may also move to a subsequent line due to loss of efficacy or treatment discontinuation due to serious adverse events (AE).

• Patients who achieve PC during first assessment are administered an increased dose of active

• In the Markov phase, patients can move to a subsequent line if they lose efficacy to second-line treatment. In the base case it is assumed that no patients lose efficacy throughout lifetime. In the scenario analysis, the probability of treatment effect loss for patients treated with pasireotide was tested (based on the discontinuation rate from PAOLA study).⁹

• The subsequent line consists of lifetime medical treatments or a combination of radiotherapy (RT) and an SRL. If a patient achieves biochemical control with RT + SRL they stop any acromegaly treatment. Otherwise, if RT + SRL did not have a successful result, they continue receiving the same SRL for lifetime after RT duration is over. Considering available acromegaly treatments options in Brazil the model assumes that half of the patients will get octreotide + RT and half

• The model implements a lifetime horizon. Costs and benefits are discounted at a rate of 5% per

• In the base case, the model applies GH and IGF-1 as biochemical markers for treatment response and evaluates the cost-effectiveness of pasireotide against maximal doses of lanreotide and

• To assess pegvisomant-based treatments that target only normalization of IGF-1 concentration, the model incorporates a scenario where efficacy is defined as IGF-1 normalization only, since pegvisomant is not a recommended treatment in the Brazilian acromegaly treatment guidelines.

• Transition probabilities for pasireotide and SRLs were based on the PAOLA¹¹ clinical trial. When alternative biochemical criteria (disease control biomarker: IGF-1) were considered i a scenario, the model applied odds ratios from a network meta-analysis¹² to derive transition probabilities for pegvisomant-inclusive treatments. Transition probabilities are summarized

• During the first 6 months from treatment initiation patients may discontinue treatment due to adverse events, with 3-month probability of 0.67% for octreotide,²¹ 2.62% for pasireotide (average of 40mg and 60mg dose discontinuation),¹¹ and 10.56% for lanreotide.¹⁴ Pegvisomant based treatments had 5.53-10.56% treatment discontinuation probability.^{14,13} • In subsequent line with the combination of RT and medical treatment, the duration of therapy

was assumed to be 10 years, and the proportion of patients experiencing control is 60%.¹⁵

n probabilities (GH and IGF-1). Source: PAOLA study ¹¹									
	First Assessment (at 3 months) Second assessment (at 6 months)								
	Achieve FC	Achieve PC	Remain in NC*	PC achieve FC with increased dose	Remain in PC				
	8.01%	11.99%	80.00%	100.00%	0.00%				
	0.00%	0.00%	100.00%	NA	NA				
	0.00%	0.00%	100.00%	NA	NA				

*All no control patients move to subsequent line after first assessment FC = full control; NA = not applicable; NC = no control; PC = partial control

Table 3. Transition probabilities (IGF-1). Source for pegvisomant-based treatments – ITC,¹² remainder - PAOLA¹¹

	First Assessment (at 3 months)			Second assessment (at 6 months)			
	Achieve FC	Achieve PC	RemainPC achieve FC within NC*increased dose		Remain in PC		
	13.18%	12.98%	73.85%	100.00%	0.00%		
	0.00%	0.00%	100.00%	NA	NA		
	0.00%	0.00%	100.00%	NA	NA		
	6.74%	17.43%	75.83%	100.00%	0.00%		
le	15.66%	12.94%	71.40%	100.00%	0.00%		
le	15.66%	12.94%	71.40%	100.00%	0.00%		

• The association between acromegaly and its risk of mortality relative to general population is captured through standardized mortality ratios (SMR) for each health state. The model assumes mortality of FC patients with acromegaly to be equal to the general population **mortality**,¹⁶ while the SMR of active disease patients is greater than one. The SMR for **NC** patients (2.40) was extracted from a published study.¹⁶ The PC SMR was estimated as the arithmetic average of the SMR of patients with FC and with NC (1.70); subsequent **treatment** SMR was assumed to be equal to the SMR of acromegaly patients who underwent

Health-related Quality of Life

- Patients' quality of life was captured through (1) health-state utility; (2) treatment-related AE disutility; and (3) comorbidity-related disutilities per health state.
- Health state utilities for FC and NC health states were based on Liu 2018,¹⁸ the subsequent average of FC and PC values.
- The comorbidity distribution depends on biological control criteria and was derived from to estimate values for partial control and subsequent treatment health states.

Table 4. Health State Utilities

		Comorbidity Disutility ^{5,20}				
Health State	Health State Utilities	Base case (GH and IGF-1)	Scenario (IGF-1)			
Full Control	0.7500	- 0.1156	- 0.1222			
Partial Control	0.6400	- 0.1470	- 0.1513			
No Control	0.5300	- 0.1784	- 0.1804			
Subsequent Treatment	0.5500	- 0.1407	- 0.1455			

GH = growth hormone; IGF-1 = insulin-like growth factor 1

it is a common toxicity.

Dosing and Drug Acquisition Cost Inputs

• Lanreotide, octreotide, and cabergoline prices²⁷ are exempted from tax, while the pasireotide price²⁸ includes 17% tax as it is not a reimbursed product in Brazil.

Table 5. Dosing and Drug Acquisition Cost Inputs									
Treatment	Base Dose	Unit cost	Monthly cost	Increased Dose (applied to PC patients)	Unit cost	Monthly cost			
Pasireotide	40mg/28 days	R\$161.73/mg	R\$7,033	60mg/28 days	R\$107.82/mg	R\$7,033			
Octreotide max dose	40mg/28 days	R\$118.35/mg	R\$5,146	40mg/28 days	R\$118.35/mg	R\$5,146			
Lanreotide max dose	120mg/28 days	R\$17.07/mg	R\$2,226	120mg/28 days	R\$17.07/mg	R\$2,226			
Additional comparato	r evaluated in the	IGF-1 scenario)						
Pegvisomant	13mg daily	R\$25.39/mg	R\$10,045	20mg daily	R\$25.39/mg	R\$15,454			
Pegvisomant + Octreotide	Pegvisomant 15mg daily	R\$25.39/mg		Pegvisomant 20mg daily	R\$25.39/mg				
	Octreotide 30mg/28 days	R\$118.35/mg	МФ10,401	Octreotide 30mg/28 days	R\$118.35/mg	МФ19,314			
Pegvisomant +	Pegvisomant 15mg daily	R\$25.39/mg	DØ10 017	Pegvisomant 20mg daily	R\$25.39/mg				
Lanreotide	Lanreotide 120mg/28 days	R\$17.07/mg	ΜΦΙ3,0Ι/	Lanreotide 120mg/28 days	R\$17.07/mg	ͲΦΙ/,ΌΟΙ			

IGF-1 = insulin-like growth factor 1; PC = partial control

Note: dose of octreotide monotherapy was based on the Brazilian acromegaly guideline²⁹ Note: Base dose of pegvisomant was based on average baseline data of patients treated with pegvisomant excluding data on patients with Omg dose in ACROSTUDY.³⁰ Note: Pegvisomant is up-titrated over time until maximum licensed dose of 30mg/day is reached.³⁰ The dose increase per half year (in pegvisomant monotherapy 0.31mg/day and in pegvisomant combination therapy 0.89mg/day) was estimated based on

ACROSTUDY.³¹

Other Costs

- resources were based on published recommendations.^{6,33-35}
- AE management costs were derived from the published nationwide study on healthcare costs (SIGTAP³²)
- Comorbidity costs per health state were derived from published study Zhao et al 2020.³⁶
- Subsequent treatment cost for the first 10 years was estimated as average of RT + maximal-
- Patients who do not achieve FC with RT + SRL after 10 years, incur monthly R\$3,686 medical treatment cost (average of octreotide and lanreotide costs) for lifetime.
- All costs in the model are in 2022 Brazilian reals.

treatment utility was derived from Kyriakakis 2017¹⁹ and the PC utility was assumed to be the

published studies.²⁻⁴ The model considers only cardiovascular (hypertension, arrythmia, cardiomyopathy), endocrine (diabetes) and respiratory (sleep apnea) comorbidities. Comorbidity distributions were available for FC and NC patients; assumptions were made

• For each intervention, the model employed grade 3-4 AEs that occurred in >2% of patients²¹⁻²⁵ for any treatment. AE disutilities were extracted from the published literature.^{5,20,26} AE disutilities for the modeled treatments ranged between 0.0002 and 0.0035. Subsequent treatment utility was decremented for hypopituitarism disutility⁵ (-0.1172) for the duration of RT (10 years) as

• Based on the treatment guidelines and recommendations for acromegaly, the model applies regular monitoring. Unit costs for the procedures were derived from istema de Gerenciamento da Tabela de Procedimentos. Medicamentos e OPM do SUS (SIGTAP)³² and frequencies o

in Brazil³⁶ and Brazil's official medicines and procedures cost from Ministry of Health database

dose octreotide and RT + maximal-dose lanreotide: R\$5,083 per month (considering RT cost of R\$1,397 per month; includes R\$4,168 radiotherapy cost³² divided by 3, assuming radiotherapy is implemented every 90 days, and R\$23.08, cost for hospitalization for the radiotherapy treatment³²).

Results

• Compared to maximal doses of SRLs, pasireotide was associated with higher incremental quality-adjusted life years (QALY) (0.95), resulting in an incremental cost-effectiveness ratio (ICER) of R\$150,051 and R\$159,143 per QALY (**Table 6**) vs. maximum doses of octreotide and lanreotide, respectively.

Table 6. Model Results. Base Case—GH and IGF-1 is Biochemical Control Criteria

				vs. maximum	doses of octre	eotide and lan	reotide, respectiv	√ely.	
Health Outcomes	Pasireotide	Octreotide max dose	Lanreotide max dose	 A scenario that applied efficacy data with the 1.0 µg/I GH cut-off from an extension to the PAOLA study⁹ resulted in R\$158,105 and R\$178,893 cost per QALY vs. octreotide and 					
Total LYs	14.3989	14.1117	14.1117						
Full Control	2.8883	0.0000	0.0000	lanreotide, respectively.					
Partial Control	0.0288	0.0000	0.0000	Table 7 Madel Deculte Ceenerie ICE 1 is Dischamical Central Criteria					
No Control	0.2500	0.2500	0.2500	Table 7. Wodel Results. Scenario - IGF-1 is Biochemical Control Criteria					
Subsequent Treatment	11.2318	13.8617	13.8617	Incremental	Octreotide	Lanreotide		Peqvisomant +	Pegvisomant +
Total QALYs	5.7756	4.8292	4.8283	Results vs. Pasireotide	max dose	max dose	Pegvisomant	Öctreotide	Lanreotide
Full Control	1.8319	0.0000	0.0000	Incremental LYs	0.3757	0.3757	0.0494	-0.0130	0.0289
Partial Control	0.0142	0.0000	0.0000	Incremental QALYs	1.2298	1.2307	0.1688	-0.0357	0.1005
No Control	0.0878	0.0878	0.0870	Incremental Costs	R\$184.029	B\$192.765	-R\$440.543	-R\$855.724	-R\$673.342
Subsequent Treatment	3.8417	4.7413	4.7413					PAS is less costly.	
Costs	Pasireotide	Octreotide max dose	Lanreotide max dose	ICER per LY R\$489,774		R\$513,024	PAS is dominant	less effective	PAS is dominant
Total Costs	R\$775,849	R\$633,834	R\$625,098	ICER por OALV	R\$1/0637	R\$156 636	PAS is dominant	PAS is less costly,	PAS is dominant
Drug acquisition	R\$737,497	R\$595,718	R\$586,958		10140,007	100,000		less effective	TAO IS COMINANT
Administration	R\$0	R\$0	R\$0	AE = adverse event; ICE	R = incremental cc	ost-effectiveness ra	tio; LY = life year; PAS =	= pasireotide; QALY = qı	uality-adjusted life year
Monitoring	R\$7,042	R\$6,165	R\$6,165						
Comorbidity	R\$30,679	R\$31,200	R\$31,200	Conc	usior	19			
AE management	R\$632	R\$752	R\$776						
Incremental Results		Octreotide max dose	Lanreotide max dose		opulation (amariaad	notionto who	wara alkaadu	tracted with
Incremental LYs		0.2871	0.2871		opulation (t apparetie	palients who	were alleady	treated with
Incremental QALYs		0.9464	0.9473	maximum c	ith upcontro	l-generatio	n Shls (Uclie	eullue and lan	
Incremental Costs		R\$142,015	R\$150,751	improved be	nn uncontre			with pasireotic	le resulted in
ICER per LY		R\$494,572	R\$524,996	monotheren	allin oulcon	les (LTS alle	u QALISjanu i	ncreased cost	Compared to
ICER per QALY		R\$150,051	R\$159,143	monotherapy treatments with maximal doses of octreotide and lanreotide.					
AE = adverse event; ICER = incr	remental cost-effectiveness ratio	o; LY = life year; QALY = quality-ad	justed life year	 The high but 	rden of dis	ease reflec	ted in a high s	standardized n	nortality ratio

- The deterministic sensitivity analysis (DSA) demonstrated that the model results were most sensitive to variation of FC and subsequent treatment utilities and doses of pasireotide (Figure 2)
- The probabilistic sensitivity analysis (PSA) analysis showed that in 100% of iterations pasireotide was more costly and more effective than SRL comparators (Figure 3).

Figure 2. Tornado Diagrams of One-way Sensitivity Analysis

INCREMENTAL COST- PASIREOTIDE VS. Lower F	INCREMENTAL COST-EFFECTIVENESS RATIO (ICER): PASIREOTIDE VS. LANREOTIDE MAX DOSE					
Utility: Full Control	R\$107,226	R\$293,397	Utility: Full Control	R\$113,752		R\$310,919
Utility: Subsequent Treatment	R\$1 <mark>15,247</mark> R\$212,981		Utility: Subsequent Treatment	R\$1 <mark>22,255</mark>	R\$225,805	
Drug high dose (mg): Pasireotide	R\$12 <mark>0,007 R\$18</mark> 0,095		Drug high dose (mg): Pasireotide	R\$12 <mark>9,126</mark>	R\$189,161	
Drug base dose (mg): Pasireotide	R\$124 <mark>,745</mark> R\$175,356		Drug base dose (mg): Pasireotide	R\$133 <mark>,860</mark>	R\$1 84,427	
Drug high dose (mg): Octreotide max dose	R\$137,69 <mark>6 R</mark> \$162,405		Drug high dose (mg): Octreotide max dose	R\$146,80 <mark>0</mark>	<mark>R</mark> \$171,487	
Drug high dose (mg): Lanreotide max dose	R\$144,707 R\$155,395		Sbsq tmt comorbidity prevalence: Sleep apnoea	R\$153,649	R\$164,922	
Sbsq tmt comorbidity prevalence: Sleep apnoea	R\$144,847 R\$155,525		Drug high dose (mg): Lanreotide max dose	R\$153,804	R\$164,483	
FC comorbidity prevalence: Sleep apnoea	R\$145,281 R\$155,311		FC comorbidity prevalence: Sleep apnoea	R\$154,108	R\$164,696	
Drug base dose (mg): Octreotide max dose	R\$146,854 R\$153,248		Mortality SMR: Subsequent Treatment	R\$155,995	R\$163,017	
Mortality SMR: Subsequent Treatment	R\$147,210 R\$153,554		Sbsq tmt comorbidity prevalence: Severe hypertension	R\$155,991	R\$162,196	
R\$50,00	00 R\$100,000 R\$150,000 R\$200,000	00 R\$50,000	R\$100,000 R\$150	,000 R\$200,000 R\$	250,000 R\$300,000	

FC = full control; SMR = standardized mortality ratio; Sbsg = subsequent; Tmt = treatment

Figure 3. Cost-effectiveness Scatterplots

PSA = probabilistic sensitivity analysis; QALY = quality-adjusted life year

- In a scenario with IGF-1 normalization as the only biochemical control criterion, pasireotide was dominant versus pegvisomant and pegvisomant + lanreotide, but less costly (-R\$855,724) and less effective (-0.036 QALYs) versus pegvisomant + octreotide (Table 7). The results versus SRLs were comparable to the base case.
- The results of the scenario assuming that some patients can lose the effect of second-line treatment (despite FC or PC) are similar to the base case. Pasireotide was associated with higher incremental QALYs (0.74), resulting in ICER of R\$116,620 and R\$128,358 per QALY

- relative to the general population and comorbidities that are prevalent among patients with acromegaly reveal the importance of addressing medical needs of patients with uncontrolled disease. Clinical trial outcomes show that pasireotide provides significant health benefits to these patients. With limited options for second-line medical treatment in Brazil, the reimbursement of pasireotide should be considered cost-effective.

References

- Melmed S. J Clin Invest. 2009;119(11):3189-3202 Carmichael JD, et al. BMC Endocr Disord. 2017;17(1):15.
- Colao A, et al. Eur J Endocrinol. 2011;165(5):713-721
- Davi MV, et al. Eur J Endocrinol. 2008;159(5):533-540. Whittington MD, et al. Growth Horm IGF Res.
- 2021;59:101389. Katznelson L, et al. J Clin Endocrinol Metab.
- 2014;99(11):3933-3951. Melmed S, et al. Nat Rev Endocrinol. 2018;14(9):5
- Giustina A. et al. J Endocrinol Invest. 2017:40(6): Colao A, et al. *Eur J Endocrinol*. 2020 Jun;182(6):583. doi: 10.1530/EJE-19-0762. PMID: 32217809; PMCID:
- PMC7222286. Ministério da Saúde. https://bvsms.saude.gov.br/ bvs/publicacoes/diretrizes_metodologicas_diretriz_ avaliacao_economica.pdf. Accessed May, 2022.
- Gadelha MR, et al. Lancet Diabetes Endocrinol. 2014;2(11):875-884.
- IMS Health. Data on File: Indirect treatment comparison.
- Trainer PJ, et al. *Clin Endocrinol (Oxf).* 2009:71(4):549-557.
- Andries M, et al. *Clin Endocrinol (Oxf).* 2008:68(3):473-480.
- Jenkins PJ, et al. J Clin Endocrinol Metab. 2006;91(4):1239-1245.
- Bolfi F, et al. Eur J Endocrinol. 2018;179(1):59-71. Sherlock M, et al. J Clin Endocrinol Metab.
- 2009;94(11):4216-4223.

- 18. Liu S, et al. J Investig Med. 2018;66(3):653-660 Kyriakakis N, et al. *Clin Endocrinol (Oxf).* 2017;86(6):806-815.
- . Shiroiwa T, et al. Value Health. 2021;24(8):1193-1202. Pasireotide. Study CSOM230C2305. Full Clinical Study Report. 2012. After crossover data. Data on File
- 22. An Z, et al. BMC Endocr Disord. 2020;20(1):57.
- 23. Colao A, et al. *Endokrynol Pol.* 2019;70(4):305-312.
- Leonart LP, et al. *Endocrine*. 2019;63(1):18-26.
- Trainer PJ, et al. N Engl J Med. 2000;342(16):1171-1177. . Harris S, et al. Can J Diabetes. 2014;38(1):45-52.
- Drug unit prices. https://portaldatransparencia.gov.br/
- licitacoes/consulta. Accessed May, 2022. . Agência Nacional de Vigilância Sanitária (ANVISA). http:// antigo.anvisa.gov.br/en/consulta-lista-de-preco-demedicamento. Accessed May 18, 2022.
- . Ministério da Saúde. https://bvsms.saude.gov.br/bvs/ publicacoes/protocolo_clinico_diretrizes_terapeuticas_ acromegalia.pdf. Accessed May 18, 2022.
-). Fleseriu M, et al. *Eur J Endocrinol.* 2021;185(4):525-538. 1. Strasburger CJ, et al. Eur J Endocrino.
- 2018;178(4):321-329.
- 2. Ministério da Saúde. http://sigtap.datasus.gov.br/tabelaunificada/app/sec/inicio.jsp. Accessed February 8, 2022. 3. Katznelson L, et al. *Endocr Pract.* 2011;17 Suppl 4:1-44.
- 34. Melmed S, et al. *Pituitary.* 2013;16(3):294-302.
- 35. Silverstein JM. Endocr Connect. 2015;4(4):R59-67.
- 36. Zhao Q, et al. Innovation (Camb). 2020;1(1):100013.

Disclosures and Acknowledgments

Disclosures: Study funded by Recordati Rare Diseases. DT, and ET are employees of Evidera, a business unit of ThermoFisher, which has received payments from Recordati Rare Diseases for services related to this poster. HP and FS are employees and shareholders of Recordati Rare Diseases. AK is an employee of MAHTA INTL. Acknowledgements: The authors would like to thank Michael Grossi and Kawthar Nakayima of Evidera, a business unit of ThermoFisher, for their editorial and graphic design contributions.

Funding provided by Recordati Rare Diseases