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Multi-level Network Meta-Regression for Survival

• Extension of standard NMA framework in which an outcome regression model is defined for the IPD studies and 

this model is integrated over the aggregate population(s) to create the aggregate-level model for the AD 

studies11

⎻ Where, 𝑦𝑖𝑗𝑘 is an event indicator for patient i in study j receiving treatment k and 𝑦.𝑗𝑘 reflects the summary 

outcome available from AD studies, which are given likelihood distributions 𝜋𝐼𝑃𝐷 and 𝜋𝐴𝐷. The respective 

conditional and marginal mean outcomes, 𝜃𝑖𝑗𝑘 and 𝜃.𝑗𝑘, are linked to the covariates and parameters of the 

linear predictor, 𝜂𝑗𝑘, through the link function 𝑔(∙)

⎻ Further, 𝜇𝑗 represent study-specific baselines, 𝛽1 and 𝛽2,𝑘 represent the mean effect of covariates and 

treatment specific effect modifiers, lastly 𝛿𝑘 is the treatment effect of the kth treatment relative to the 

reference 

• In the context of survival, the individual likelihood contributions for the proportional hazard models are defined 

by the survival, 𝑆𝑗𝑘, and hazard, 𝜆𝑗𝑘, functions at time, 𝑡𝑖𝑗𝑘, as described in Table 1

• The fixed effect ML-NMR assumed a proportional hazards Weibull, Gompertz, or exponential model, adjusted for 

number of prior lines, age, and triple-class refractory (TCR) status

• Using a Bayesian framework, parameters were estimated using Markov Chain Monte Carlo method using R 

(packages: rstan and loo) and Stan20-22
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Background

• Indirect treatment comparisons (ITCs), such as network meta-

analysis (NMA) of randomized controlled trials (RCTs), are 

needed to estimate the relative efficacy of competing 

interventions evaluated across trials

• Differences in effect modifiers between the different direct 

comparisons may bias NMAs1-3

• Network meta-regression (NMR) using aggregate data (AD) has 

risk of aggregation bias4,5

• NMR using individual patient data (IPD) for all RCTs in the 

network is the gold standard to adjust for differences in effect 

modifiers6,7

• NMR methods to combine IPD with AD in an NMA framework8,9

that use common regression coefficients for IPD and AD may 

result in aggregation bias

⎻ Jansen et al. (2012) proposed a model for IPD and AD that 

avoids this challenge by integrating over the covariate 

distribution for the AD studies for binary outcomes and 

covariates10

⎻ Phillippo et al. (2020)11 extended this approach to a 

generalized framework: multi-level network meta-regression 

(ML-NMR)

Benefits of ML-NMR

• ML-NMR reflects an extension of the standard NMA framework, 

which addresses challenges with previous ITC methods

• ML-NMR first defines an individual-level regression model, 

which is then integrated over the aggregate populations to 

form an aggregate-level model, which can be applied to 

different types of outcomes (and corresponding likelihoods) 

and covariates (i.e., dichotomous, continuous, etc.)11 

• ML-NMR is applicable in networks of various sizes, avoids 

aggregation bias, and produces estimates in any target 

population 

• ML-NMR may result in less biased estimates compared to NMA 

without covariates12 and may improve model fit and lead to 

more precise estimates as compared to a random-effects NMA 

model (without covariates) in cases where within- and 

between-study variation can be explained13

• To our knowledge, ML-NMR has only been published and 

applied to binary outcomes

Methods

Objectives

• To highlight the ML-NMR models for time to event outcomes as 

presented by Phillippo et al. (2019)14

• To illustrate their application with a case study evaluating 

treatments for triple-class exposed (TCE) relapsed/refractory 

multiple myeloma (RRMM) patients in terms of overall survival 

(OS)
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Figure 2. Overview of predictions (Weibull model adjusted for number of 

prior lines of therapy, triple-class refractory status, and age)

Figure 1: Network diagram of artificial randomized 

controlled trials

Table 1: Survival and hazard functions for common 

parametric survival models

Case study evidence base

• We included three single-arm clinical trials and two real-world studies:

⎻ Clinical trials: KarMMa evaluating ide-cel15; STORM-2 evaluating selinexor + dexamethasone (Sd)16; DREAMM-2 

evaluating belantamab mafodotin (BM)17

⎻ Real-world studies: KarMMa-RW evaluating conventional care (CC)18 and MAMMOTH evaluating CC19

• ML-NMR requires a connected network of RCTs; therefore, we generated artificial-RCTs (aRCTs) based on a naïve 

comparison of (Figure 1):

⎻ KarMMa vs KarMMa-RW (two-arm aRCT based on IPD: ide-cel versus CC)

⎻ DREAMM-2 intention-to-treat (ITT) vs STORM-2 ITT vs MAMMOTH treated populations (three-arm aRCT based on 

AD: BM vs. Sd vs. CC)

• Between-study differences were identified based on a rank-ordering of prognostic factors from a systematic 

literature review, covariates included in published ITCs in TCE RRMM, and predictive models 

• The ML-NMR models included number of prior lines, age, and triple-class refractory (TCR) status as covariates 

(Figure 1)

Conclusions

• This ML-NMR case study demonstrates the feasibility of 

applying ML-NMR for time-to-event outcomes

• Findings from this analysis suggest that ide-cel is more 

efficacious than Sd, BM, and CC

• There was little evidence of effect modification, which may 

have been because of small differences in the covariates 

• ML-NMR is designed to indirectly compare treatments based on 

a connected network of RCTs. Since we generated artificial 

RCTs based on non-randomized studies (i.e., single-arm 

clinical trials and real-word studies), results from the 

illustrative case study may have been biased

• The benefit of using ML-NMR depends to some extent on the 

reporting of covariate distributions for continuous covariates 

in AD studies

• Run-time for fitting the model in STAN was approximately 15-

30 minutes. Memory usage was more burdensome where 4 

MCMC chains with 2000 iterations each required up to 9.6 GB 

of RAM when saving information for integration checks. 

Alternatively, fitting the model twice without saving this 

information and ensuring the same parameter estimates are 

obtained across runs can be done to reduce RAM usage to 2GB.

• Future research may be beneficial to explore:

• inclusion of missing covariate values in the ML-NMR model 

• integration of evidence from subgroups

• additional functional forms 

• more complex network structures with multiple IPD studies

• time-varying HRs that avoid proportional hazards assumption

• We would expect ML-NMR to have the most value when there 

are important differences in effect modifiers within the 

network of evidence that can be adjusted for in the analysis
Abbreviations: aRCT, artificial randomized controlled trial; BM, Belantamab mafodotin; CC, Conventional care; Ide-cel, idecabtagene vicleucel; IPD, 
individual patient data; Sd, Selinexor + dexamethasone.
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Table 2. Survival and hazard functions for common parametric survival 

models

• Figure 2 presents an overlay population-average survival curves estimated using 

the Weibull distribution relative to the observed Kaplan-Meier curves, which 

illustrate the fit of the model to the observed data

• Using a Weibull distribution, we estimated hazard ratios (HRs) and 95% credible 

intervals (CrIs) for the aRCT-IPD (i.e., KarMMa vs KarMMa-RW) target population 

(Table 2), which suggested:

⎻ Ide-cel was more efficacious than Sd (HR 0.28 [95% CrI: 0.17, 0.47]), BM (HR 

0.50 [95% CrI: 0.30, 0.82]), and CC (HR 0.45 [95% CrI: 0.29, 0.69])

⎻ The CrIs included the null effect for Sd vs CC and BM vs CC

⎻ Effect modifiers had minimal impact on the model (95% CrIs of the estimates 

included zero), and only the TCR main effect had an impact on the model

⎻ The 95% CrIs from adjusted models were wider in comparison to CrIs from 

models without covariates

𝑦𝑖𝑗𝑘 ~ 𝜋𝐼𝑃𝐷 𝜃𝑖𝑗𝑘
𝑔 𝜃𝑖𝑗𝑘 = 𝜂𝑗𝑘 𝑥𝑖𝑗𝑘 = 𝜇𝑗 + 𝒙𝑖𝑗𝑘

𝑇 𝛽1 + 𝛽2,𝑘 + 𝛿𝑘
Individual

𝑦.𝑗𝑘 ~ 𝜋𝐴𝐷 𝜃.𝑗𝑘

𝑔 𝜃.𝑗𝑘 = න
𝑋

𝑔−1 ⅆ 𝜂𝑗𝑘 𝒙 𝑓𝑗𝑘 𝒙 𝑥
Aggregate

Survival 

Distribution
Parameters

Survival and hazard 

functions

Exponential
Hazard rate 𝜃𝑗𝑘 modelled 

with exp 𝜂𝑗𝑘 x

𝑆(𝑡)=exp(−𝜃𝑡)

𝜆(𝑡)=𝜃

Weibull

Hazard rate 𝜃𝑗𝑘 modelled 

with exp 𝜂𝑗𝑘 x ; shape 

𝑣𝑗

𝑆 𝑡 = exp −𝜃𝑡𝑣

𝜆 𝑡 = 𝑣𝜃𝑡𝑣−1

Gompertz

Hazard rate 𝜃𝑗𝑘 modelled 

with exp 𝜂𝑗𝑘 x ; shape 

𝑣𝑗

𝑆 𝑡 = exp −
𝜃

𝑣
exp 𝑡𝑣 − 1

𝜆 𝑡 = 𝜃 exp 𝑡𝑣

Results

HRs predicted for aRCT-IPD population No covariates Three covariates

Tx vs. CC

Ide-cel vs. CC
0.50

(0.37, 0.68)

0.45

(0.29, 0.69)

Sd vs. CC
1.44

(1.06, 1.92)

1.56

(0.98, 2.62)

BM vs. CC
0.83

(0.61, 1.12)

0.89

(0.54, 1.52)

Ide-cel vs. Tx

Ide-cel vs. Sd
0.35

(0.23, 0.55)

0.28

(0.17, 0.47)

Ide-cel vs. BM
0.60

(0.39, 0.96)

0.50

(0.30, 0.82)

Model parameters No covariates Three covariates

Main effect

Age --
0.01

(-0.01, 0.03)

Triple-class refractory --
0.59

(0.17, 1.02)

Number of prior treatments --
0.02

(-0.10, 0.12)

Effect modifier

Age --
-0.02

(-0.05, 0.02)

Triple-class refractory --
-0.24

(-1.03, 0.65)

Number of prior treatments --
-0.02

(-0.17, 0.12)

𝐿𝑖𝑗 ȁ𝑘 𝑥 𝜉; 𝑡𝑖𝑗𝑘 , 𝑦𝑖𝑗𝑘 , 𝒙𝑖𝑗𝑘 = 𝑆𝑗𝑘 ห𝑡𝑖𝑗𝑘 𝒙𝑖𝑗𝑘 𝜆𝑗𝑘 ห𝑡𝑖𝑗𝑘 𝒙𝑖𝑗𝑘
𝑦𝑖𝑗𝑘

Abbreviations: aRCT, artificial randomized controlled trial; BM, Belantamab mafodotin; CC, Conventional care; Ide-cel, idecabtagene vicleucel; IPD, individual 
patient data; Sd, Selinexor + dexamethasone; Tx, treatment.

Abbreviations: AD, aggregate-level data; aRCT, artificial randomized controlled trial; BM, Belantamab 
mafodotin; CC, Conventional care; Ide-cel, idecabtagene vicleucel; IPD, individual patient data; IQR, 
interquartile range; Sd, Selinexor + dexamethasone; TCR, triple-class refractory.
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