Threshold Price in the US to Achieve Cost–Effective Use of Molnupiravir and Nirmatrelvir for the Prevention of Severe COVID–19 in High–Risk Adults

Thomas Majda PharmD¹, David Veenstra PharmD, PhD¹

¹The CHOICE Institute, University of Washington School of Pharmacy, Seattle WA

BACKGROUND

Oral antivirals, molnupiravir and nirmatrelvir, were shown to prevent hospitalization and death due to COVID-19 in high-risk US adults.^{1,2} As a result, the US government granted emergency use authorization and reached price agreements for access to these treatments.^{3,4}

Objective: To determine a threshold price for cost-effective use of molnupiravir and nirmatrelvir in the prevention of severe COVID-19 in unvaccinated adults with at least one risk factor for progression to severe disease.

METHODS

We developed a decision analysis tree to analyze treatment with antivirals or placebo prevent hospitalization and death due to COVID-19. (Figure 1)

- > Key assumptions: all deaths were COVID-19 related, all individuals were hospitalized before death
- > From a US payer perspective with a lifetime time horizon

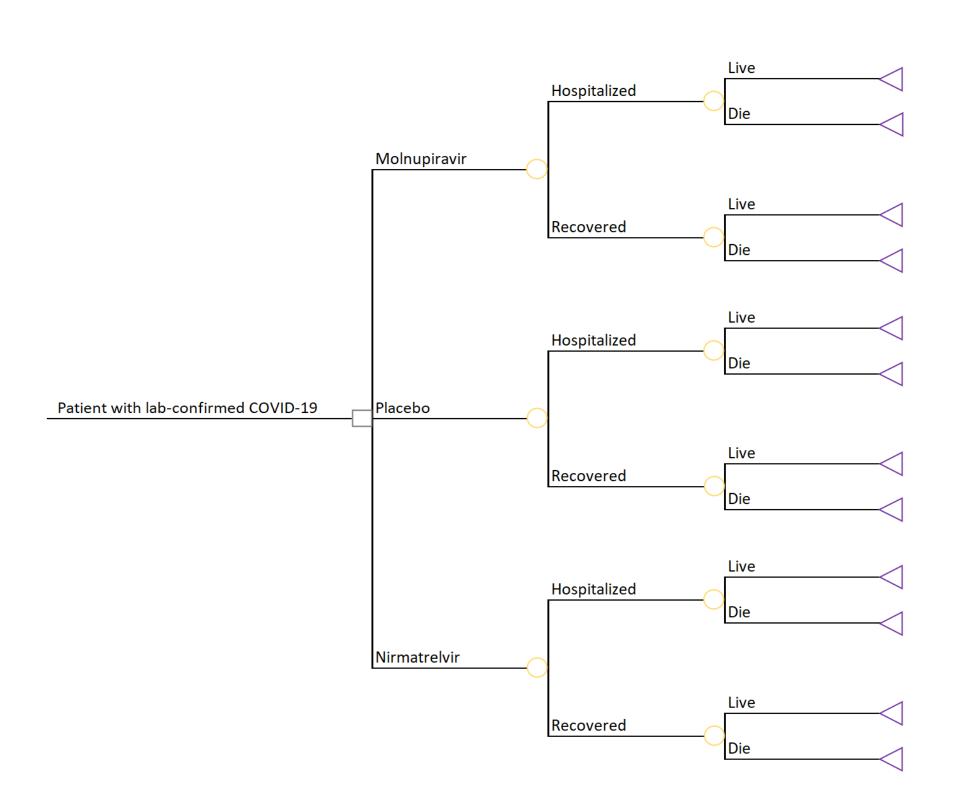


Figure 1. Decision Analysis Tree.

IMPORTANT TAKEAWAYS

- > In a decision analysis for the prevention of hospitalization and death due to COVID-19 in unvaccinated individuals, nirmatrelvir dominated placebo and molnupiravir.
- > Given a WTP threshold of \$100,000 per QALY, cost-effective use was estimated at \$1,287 for molnupiravir and \$2,643 for nirmatrelvir per treatment course when compared to placebo (Figure 2).
- > These estimated threshold prices are notably higher than current government negotiated prices highlighting the public health importance of affordability of these antivirals.

Inputs	Value	Range	Description	Source
Probabilities				
Molnupiravir				
Hospitalization	.05716	0.009 - 0.102	calculated for an absolute effect relative to averaged placebo rate	Jayk Bernal, et al. ¹
Mortality	.0016	0 - 0.002	calculated for an absolute effect relative to averaged placebo rate	Jayk Bernal, e [.] al. ¹
Placebo				
Hospitalization	.08214	0.067 - 0.097	each reported trial placebo rate given equal weight	1,2
Mortality	.01461	0.013 - 0.016	each reported trial placebo rate given equal weight	1,2
Nirmatrelvir			1 0	
Hospitalization	.01212	0.005 - 0.068	calculated for an absolute effect relative to averaged placebo rate	Interim analysis²
Mortality	0	N/A - 0.001	calculated for an absolute effect relative to averaged placebo rate	Interim analysis ²
Outcomes				,
QALY lost due to COVID-19 death	5.96	4.76 - 7.62	authors adjusted for age, comorbidities, and discounted using a 3% rate	Briggs, et al. ⁵
Costs				
Molnupiravir treatment course	\$710	\$568 - \$852	agreement with US government for 3.1 million treatment courses	Press Release ³
Nirmatrelvir treatment course	\$529	\$423 - \$635	agreement with US government for 10 million treatment courses	Press release
Outpatient visit to obtain antiviral	\$95	\$76 - \$114	used HCPCS code 99213 and averaged cost based on CMS physician fee schedule	CMS ⁶
COVID-19 hospitalization	\$28,889	\$16,442 - \$60,958	averaged mean hospitalization cost as stratified by sex	Ohsfeldt, et

Table 1. Model Inputs and Ranges.

RESULTS

- > In our base case analysis, the ICER was estimated at \$12,599 per QALY for molnupiravir when compared with placebo. Nirmatrelvir dominated when compared with placebo and molnupiravir.
- > Nirmatrelvir dominated when compared with placebo and molnupiravir across all parameter ranges except an increase in nirmatrelvir. (Figure 3)

Figure 2. Threshold Prices for Cost-Effective Use at Various WTP Thresholds.

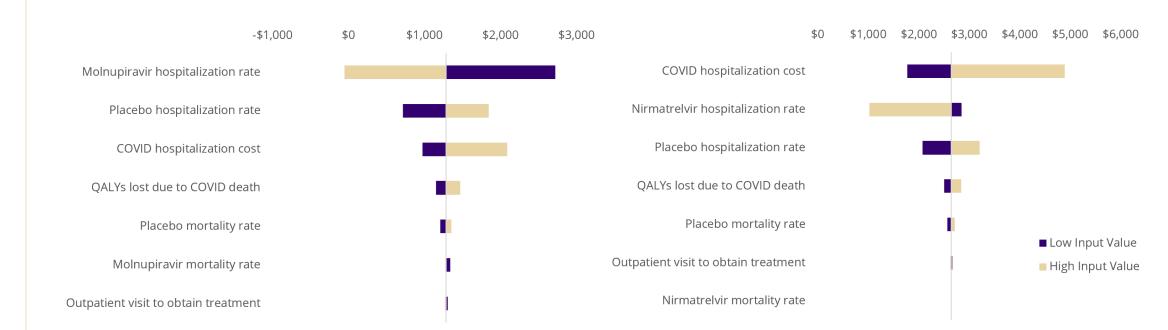


Figure 3. One-way Sensitivity Analysis of Molnupiravir (left) and Nirmatrelvir (right) Threshold Price for Cost-Effective Use at a WTP of \$100,000 per QALY.

DISCUSSION

- > These estimated threshold prices are notably higher than current government negotiated prices highlighting the public health importance of affordability of these antivirals.
- > These results align with the Institute for Clinical and Economic Review's finding that these medications were cost-effective in US high risk adults.8
- > **Limitations:** an interim analysis of nirmatrelvir trial data was used for efficacy inputs, more evidence is needed to determine if these antivirals will be useful in vaccinated high-risk adults

Acknowledgement: We would like to thank Genentech for supporting Thomas's postdoctoral fellowship.

REFERENCES

- 1. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. *N Engl J Med*. 2022;386(6):509-520.
- 2. Nirmatrelvir interim analysis. (https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate)
- 3. Molnupiravir price agreement. (https://www.merck.com/news/merck-and-ridgeback-announce-u-s-government-to-purchase-1-4-million-additional-courses-of-molnupiravir-an-investigational-oral-antiviral-medicine-for-the-treatment-of-mild-to-moderate-covid-19-in-a/)
- 4. Nirmatrelvir price agreement. (https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provide-us-government-10-million-treatment-courses)
 5. Briggs, A.H., Goldstein, D.A., Kirwin, E., Meacock, R., Pandya, A., Vanness, D.J. and Wisløff, T. (2021), Estimating (quality-adjusted) life-year losses associated with deaths:
- With application to COVID-19. *Health Economics*, 30: 699-707

 6. 2021 CMS physician fee schedule. (https://www.cms.gov/medicare/physician-fee-schedule/search?Y=0&T=4&HT=0&CT=3&H1=99213&M=5)

Draft Evidence Report. Institute for Clinical and Economic Review, February 3, 2022. https://icer.org/assessment/covid-19-2022/.

7. Ohsfeldt RL, Choong CK, Mc Collam PL, Abedtash H, Kelton KA, Burge R. Inpatient Hospital Costs for COVID-19 Patients in the United States. *Adv Ther*. 2021;38(11):5557-5595. doi:10.1007/s12325-021-01887-4
8. Yeung K, Whittington MD, Beinfeld M, Mohammed R, Wright A, Nhan E, Fluetsch N, Richardson M, Pearson SD. Special Assessment of Outpatient Treatments for COVID-19;