PCN197

Estimation of the Population of Patients with RET-Altered Tumors in the United States

Naleen Raj Bhandari, MS, PhD¹; Frank Cinfio, BS²; Saman Souri, PhD²; Lee Smolen, BSSE²; Amine Ale-Ali, PharmD, BCOP¹; Lisa M. Hess, PhD¹

¹Eli Lilly and Company, Indianapolis, IN, USA; ²Medical Decision Modeling Inc., Indianapolis, IN, USA

BACKGROUND

- The REarranged during Transfection (RET) is an activating oncogenic driver in various tumor types.
- The oncogenic activation of RET can occur by one of the two major known alteration mechanisms: point mutations and fusions^{1,2}
- The most common tumor types with RET alterations include²
 - medullary thyroid cancer (RET mutations) _
 - other thyroid cancer (RET fusions)
 - non-small cell lung cancer (RET fusions)
- Selpercatinib is an oral agent that targets the RET proto-oncogene and other kinases that is currently being studied in patients diagnosed with RETaltered advanced solid tumors and other tumors with RET activation^{3,4}
 - List of the ongoing clinical trials: LIBRETTO-001 (NCT03157128), LIBRETTO-321 (NCT04280081), LIBRETTO-431 (NCT04194944), LIBRETTO-531 (NCT04211337), and LIBRETTO-121 (NCT03899792)

Objective

To estimate the annual population of patients with non-small cell lung cancer, medullary thyroid cancer, and other thyroid cancer potentially eligible for RET-targeted therapy in the United States (US)

METHODS

Cancer Incidence and Disease Progression

Table 2. Age ≥65 Years: Estimation of Number of Patients with RET Fusion-Positive Non-Small Cell Lung Cancer Eligible for RET-Targeted Therapy in the United States

Patient Population	Value	Reference
Plan Members	1,000,000	Assumption
Annual Incidence Rate of NSCLC per 100,000	287.6478	SEER Incidence (NSCLC) ⁵
% Metastatic Disease	90.96%	SEER Stage Distribution (NSCLC) ⁶ , NSCLC Meta-analyses Collaborative Group ⁸
% of NSCLC Patients that are Non-Squamous	73.08%	SEER Data by Histology (NSCLC) ⁷
% Patients Tested	100%	Assumption
% of NSCLC Patients with RET Fusions	1.0%	Kato et al., 2017 ²
% of Patients Eligible for Treatment	100.0%	Assumption
# 1st Line Metastatic NSCLC Patients w/RET Fusions	26.16	Calculated Value
Proportion of 1L Patients who Receive 2nd Line Therapy	45.95%	Simeone et al., 2019 ⁹
# 2nd Line Metastatic NSCLC Patients w/RET Fusions	12.02	Calculated Value
Total # Metastatic NSCLC Patients w/RET Fusions (1L + 2L)	38.19	Calculated Value

Figure 2. Age ≥65 Years: Patient Flow and Calculations for the Estimation of Number of Patients with RET Fusionpositive Non-Small Cell Lung Cancer Eligible for RET-**Targeted Therapy in the United States**

Plan Members x (Incidence/100,000)			
1,000,000 x 287.65/100,000 = 2,876.48			
# NSCLC Patient	s x % Metastatic		
2,876.48 x 90.9	96% = 2,616.44		
# Metastatic NSCLC x % Non-Squamous	# Metastatic NSCLC x % Squamous		
2,616.44 x 73.08% = 1,912.10	2,616.44 x 26.92% = 704.35		
# Metastatic NSCLC Non-Squamous x % Tested	# Metastatic NSCLC Squamous x % Tested		
1,912.10 x 100.00% = 1,912.10 704.35 x 100.00% = 704.35			
# Tested Metastatic NSCLC Non-Squamous x % RET # Tested Metastatic NSCLC Squamous x % RET			
1,912.10 x 1.00% = 19.12 704.35 x 1.00% = 7.04			
(# Metastatic Non-Squamous w/RET + # Metastatic Squamous w/RET) x % Eligible for Treatment			
$(19.12 + 7.04) \times 100.00\% = 26.16$			
All Eligible Patients Receive 1st Line Therapy*	# 1st Line Patients x % Receive 2nd Line Therapy§		
26.16 x 45.95% = 12.02 Patients Receive 2nd Line Therapy 26.16 x 45.95% = 12.02 Patients Receive 2nd Line Therapy			
# 1st Line Metastatic NSCLC Patients w/RET Fusions + # 2nd Line Metastatic NSCLC Patients w/RET Fusions			
26.16 + 12.02 = 38.19 Treated Patients			

*Patients eligible for 1st line therapy are derived from a 1st line population for the current year §Patients eligible for 2nd line therapy are derived from a previous-year 1st line population, representing patients who progressed after treatment

Medullary Thyroid Cancer (MTC)

- The annual incidence of thyroid cancer was estimated at 15.8 per 100,000 persons in the US, of which approximately 1.6% have medullary thyroid cancer^{10,11}
- Calculations are provided in Figure 3 (all ages) and Figure 4 (\geq 65 years)
- Among 1 million persons of all ages, it was estimated that

Figure 4. Age ≥65 Years: Patient Flow and Calculations for the Estimation of Number of Patients with RET-Mutant Medullary Thyroid Cancer Eligible for RET-Targeted **Therapy in the United States**

Plan Members x (Incidence/100,000) 1,000,000 x 24.04/100,000 = 240		
# Patients with Thyroid Cancer x Proportion Medullary 240 x 1.55% = 3.73		
# MTC Patients x % Advanced/Metastatic 4 x 57.20% = 2.13		
# Advanced MTC Patients x % Sporadic # Advanced MTC Patients x % Hereditary 2.13 x 75.00% = 1.60 2.13 x 25.00% = 0.53		
# Advanced Sporadic MTC Patients x % Tested 1.60 x 100.00% = 1.60 # Advanced Hereditary MTC Patients x % Tested 0.53 x 100.00% = 0.53		
# Tested Advanced Sporadic MTC x % RET Mutations 1.60 x 50.00% = 0.80 # Tested Advanced Hereditary x % RET Mutations 0.53 x 95.00% = 0.51		
# Advanced Sporadic MTC Patients + # Advanced Hereditary MTC Patients 0.80 + 0.51 = 1.31 Treated Patients		

Other Thyroid Cancer (TC)

- The annual incidence of thyroid cancer was estimated at 15.8 per 100,000 persons in the US^{10}
- Calculations are provided in Figure 5 (all ages) and Figure 6 (\geq 65 years)
- Among 1 million persons of all ages, it was estimated that 1.15 patients with RET fusion-positive TC will be eligible to receive RET-targeted therapy (Table 5)
- Among 1 million persons of age \geq 65 years, it was estimated that 3 patients with RET fusion-positive TC will be eligible for receiving RETtargeted therapy (Table 6)

Table 5. All Ages: Estimation of Number of Patients with RET Fusion-Positive Thyroid Cancer Eligible for RET-Targeted Therapy in the United States

Patient Population	Value	Reference
Plan Members	1,000,000	Assumption
Annual Incidence Rate of Thyroid Cancer (TC) per 100,000	15.7606	SEER Incidence (TC) ¹⁰
% Metastatic	3.7%	SEER Incidence (TC) ¹⁰
% Localized/Regional Disease (not Metastatic)	96.3%	1 - % Metastatic = 1 - 0.037
	1.00/	To an a tal 400016

- Surveillance, Epidemiology, and End Results (SEER) registry data from 2012-2016 were used to estimate the annual rates of tumor- and histologyspecific incidence per 100,000 US population including males and females of all ages and races/ethnicities
- The weighted average of the age-specific rates in individuals aged \geq 65 years from SEER was used to estimate the annual incidence rates for the Medicare population
- The rates of tumor-specific advanced stage at diagnosis were estimated from SEER statistics (2009-15 for NSCLC & other TC; 2003-12 for MTC), while the rates of tumor-specific disease progression were estimated through review of literature
- The rates referenced above were used as point estimates for a budgetary impact analysis (BIA). Point estimate variable uncertainty was handled via one-way sensitivity analyses in subsequent BIA

Prevalence of RET Alterations by **Tumor Type**

The literature was reviewed to estimate the prevalence of RET alterations across tumor types included in this study

Key Assumptions

- Tumor genetic profile testing was assumed to have been done on all patients
- Patients who received radioactive iodine (RAI) therapy were assumed to receive only one round of RAI prior to becoming eligible for RET-targeted therapy upon progression

Population Estimation

- For each tumor type, the potential number of patients eligible for RET-targeted therapy was estimated per 1,000,000 persons per year
 - Estimates were also calculated for patients ≥ 65 years of age (e.g. Medicare population)
- Calculations and chart creation was performed using MS Excel® and were validated by multiple independent reviewers

RESULTS

Non-small Cell Lung Cancer (NSCLC)

- The annual incidence of NSCLC was estimated at 48.8 per 100,000 persons in the $US^{5,6}$
- Calculations are provided in Figure 1 (all ages) and Figure 2 (≥ 65 years)
- Among 1 million persons of all ages, it was estimated that

- ~1 patient with RET mutation-positive MTC will be eligible to receive RET-targeted therapy (Table 3)
- Among 1 million persons of age \geq 65 years, it was estimated that ~1.3 patients with RET mutation-positive MTC will be eligible for receiving RET-targeted therapy (Table 4)

Table 3. All Ages: Estimation of Number of Patients with **RET-Mutant Medullary Thyroid Cancer Eligible for RET-Targeted Therapy in the United States**

Patient Population	Value	Reference
Commercial Plan Members	1,000,000	Assumption
Annual Incidence Rate of Thyroid Cancer per 100,000	15.7606	SEER Incidence (TC) ¹⁰
% of Thyroid Cancer Patients that are MTC	1.55%	SEER Data by Histology (TC) ¹¹
% Advanced/Metastatic Disease	57.20%	Randle et al., 2017 ¹² & Sippel et al., 2008 ¹³
% MTC Patients - Sporadic	75.00%	Wells et al., 2013 ¹⁴
% MTC Patients - Hereditary	25.00%	Wells et al., 2013 ¹⁴ (1 – 0.75) = 0.25
% MTC Patients Tested	100.00%	Assumption
Sporadic MTC Patients*		
# Tested Advanced Sporadic MTC	1.05	Calculated Value
% Sporadic MTC Patients with RET Mutations	50.00%	Wells et al., 2015 ¹⁵
# Tested Advanced Sporadic MTC Patients with RET Mutations	0.52	Calculated Value
Hereditary MTC Patients*		
# Tested Advanced Hereditary MTC	0.35	Calculated Value
% Hereditary MTC Patients w/RET Mutations	95.00%	Wells et al., 2015 ¹⁵
# Tested Advanced Hereditary MTC Patients with RET Mutations	0.33	Calculated Value
Advanced MTC Patients w/RET Mutations		
Total # of Advanced Sporadic + Hereditary MTC w/RET Mutations	0.86	Calculated Value

*The sporadic and hereditary MTC patients are discrete patient populations. Refer to funnel on the next slide to see derivation of the total # of patients with advanced MTC w/RET mutations who are eligible for treatment.

Figure 3. All Ages: Patient Flow and Calculations for the **Estimation of Number of Patients with RET-Mutant** Medullary Thyroid Cancer Eligible for RET-Targeted **Therapy in the United States**

Plan Members x (Incidence/100,000) 1,000,000 x 15.76/100,000 = 158			
# Patients with Thyroid Cancer x Proportion Medullary 158 x 1.55% = 2.44			
# MTC Patients x % Advanced/Metastatic 2 x 57.20% = 1.40			
# Advanced MTC Patients x % Sporadic # Advanced MTC Patients x % Hereditary 1.40 x 75.00% = 1.05 1.40 x 25.00% = 0.35			
# Advanced Sporadic MTC Patients x % Tested 1.05 x 100.00% = 1.05 4 Advanced Hereditary MTC Patients x % Tested 0.35 x 100.00% = 0.35			
# Tested Advanced Sporadic MTC x % RET Mutations 1.05 x 50.00% = 0.52 # Tested Advanced Hereditary x % RET Mutations 0.35 x 95.00% = 0.33			
# Advanced Sporadic MTC Patients + # Advanced Hereditary MTC Patients 0.52 + 0.33 = 0.86 Treated Patients			

Table 4. Age ≥65 Years: Estimation of Number of Patients with RET-mutant Medullary Thyroid Cancer Eligible for **RET-targeted Therapy in the United States**

Patient Population	Value	Reference
Plan Members	1,000,000	Assumption
Annual Incidence Rate of Thyroid Cancer per 100,000	24.0391	SEER Incidence (TC) ¹⁰
% of Thyroid Cancer Patients that are MTC	1.55%	SEER Data by Histology (TC) ¹¹
% Advanced/Metastatic Disease	57.20%	Randle et al., 2017 ¹² & Sippel et al., 2008 ¹³
% MTC Patients - Sporadic	75.00%	Wells et al., 2013 ¹⁴
% MTC Patients - Hereditary	25.00%	Wells et al., 2013 ¹⁴ (1 – 0.75) = 0.25
% MTC Patients Tested	100.00%	Assumption
Sporadic MTC Patients*		
# Tested Advanced Sporadic MTC	1.60	Calculated Value
% Sporadic MTC Patients with RET Mutations	50.00%	Wells et al., 2015 ¹⁵
# Tested Advanced Sporadic MTC Patients with RET Mutations	0.80	Calculated Value
Hereditary MTC Patients*		
# Tested Advanced Hereditary MTC	0.53	Calculated Value
% Hereditary MTC Patients w/RET Mutations	95.00%	Wells et al., 2015 ¹⁵
# Tested Advanced Hereditary MTC Patients with RET Mutations	0.51	Calculated Value
Advensed MTC Detients w/DET Mutations		

# Advanced/Metastatic RET Fusion-Positive TC Patients	1.15	Calculated value
% RET Fusion-Positive TC	8.75%	Weighted – Agrawal et al., 2014 ¹⁷ , Guerra et al., 2000 ¹⁸ & Adeniran et al., 2000 ¹⁹
% Advanced/Metastatic Patients Tested	100.0%	Assumption
	110 / 0	roang or any rooo

Figure 5. All Ages: Patient Flow and Calculations for the Estimation of Number of Patients with RET Fusion-Positive Thyroid Cancer Eligible for RET-Targeted Therapy in the United States

Patients with surgery who progress will receive radioactive iodine (RAI) treatment; Patients will be eligible for systemic therapy after one round of RAI

Table 6. Age ≥65 Years: Estimation of Number of Patients with RET Fusion-Positive Thyroid Cancer Eligible for **RET-Targeted Therapy in the United States**

Patient Population	Value	Reference
Plan Members	1,000,000	Assumption
Annual Incidence Rate of Thyroid Cancer (TC) per 100,000	24.0391	SEER Incidence (TC) ¹⁰
% Metastatic	10.0%	SEER Incidence (TC) ¹⁰
% Localized/Regional Disease (not Metastatic)	90.0%	1 - % Metastatic = 1 - 0.10
% Localized/Regional Patients that Advance	4.8%	Tsang et al., 1998 ¹⁶
% Advanced/Metastatic Patients Tested	100.0%	Assumption
% RET Fusion-Positive TC	8.75%	Weighted – Agrawal et al., 2014 ¹⁷ , Guerra et al., 2000 ¹⁸ & Adeniran et al., 2000 ¹⁹
# Advanced/Metastatic RET Fusion-Positive TC Patients	3.01	Calculated value

Figure 6. Age ≥65 Years: Patient Flow and Calculations for the Estimation of Number of Patients with RET Fusion-positive Thyroid Cancer Eligible for RET-**Targeted Therapy in the United States**

*†The following assumptions were made to define the '% that advance': Patients with surgery who progress will receive radioactive logine (RAI) treatment; Patients will be eligible for systemic therapy after one round of RAI

6.5 patients with RET fusion-positive metastatic NSCLC will be eligible to receive RET-targeted therapy in the firstline or second-line settings combined (Table 1)

Among 1 million persons of age \geq 65 years, it was estimated that 38.2 patients with RET fusion-positive NSCLC will be eligible for receiving RET-targeted therapy in either the firstline or second-line setting combined (Table 2)

Table 1. All Ages: Estimation of Number of Patients with **RET Fusion-Positive Non-Small Cell Lung Cancer** Eligible for RET-Targeted Therapy in the United States

Patient Population	Value	Reference
Plan Members	1,000,000	Assumption
Annual Incidence Rate of NSCLC per 100,000	48.7627	SEER Incidence (NSCLC) ⁵
% Metastatic Disease	91.46%	SEER Stage Distribution (NSCLC) ⁶ , NSCLC Meta-analyses Collaborative Group ⁸
% of NSCLC Patients that are Non-Squamous	73.08%	SEER Data by Histology (NSCLC) ⁷
% Patients Tested	100%	Assumption
% of NSCLC Patients with RET Fusions	1.0%	Kato et al., 2017 ²
% of Patients Eligible for Treatment	100.0%	Assumption
# 1st Line Metastatic NSCLC Patients w/RET Fusions	4.46	Calculated Value
Proportion of 1L Patients who Receive 2nd Line Therapy	45.95%	Simeone et al., 2019 ⁹
# 2nd Line Metastatic NSCLC Patients w/RET Fusions	2.05	Calculated Value
Total # Metastatic NSCLC Patients w/RET Fusions (1L + 2L)	6.51	Calculated Value

Figure 1. All Ages: Patient Flow and Calculations for the Estimation of Number of Patients with RET Fusion-Positive Non-Small Cell Lung Cancer Eligible for RET-**Targeted Therapy in the United States**

*Patients eligible for 1st line therapy are derived from a 1st line population for the current year §Patients eligible for 2nd line therapy are derived from a previous-year 1st line population, representing patients who progressed after treatment

Total # of Advanced Sporadic + Hereditary MTC w/RET Mutations	1.31	Calculated Value

*The sporadic and hereditary MTC patients are discrete patient populations. Refer to funnel on the next slide to see derivation of the total # of patients with advanced MTC w/RET mutations who are eligible for treatment.

Limitations

- The estimated numbers of patient population presented in this study are limited to the US
- The estimates presented in this study are based on currently available literature, however, the actual number of patients eligible for RET-targeted therapy may vary along with improvements in estimated prevalence of RET
- The assumption of 100% testing used in this study is an ideal best case scenario, however, not all patients currently receive genomics-based testing at diagnosis

CONCLUSION

- We estimate that in the United States a total of about 8.52 patients per million persons, or approximately 2,800 patients (assuming US population of 328 million) are eligible for RET-targeted therapy each year
- These findings provide a specific quantification of the anticipated number of patients potentially eligible for treatment with novel agents targeting RET
- The estimated number of patients in this study are small relative to the overall population of patients with NSCLC or thyroid cancer

References

- 1. Mulligan LM, 2014. Nat Rev Cancer, 14:173-186.
- 2. Kato et al., 2017. Clin Cancer Res, 23(8):1988-1997.
- Drilon et al., 2018. Nat Rev Clin Oncol, 15, 150. 3.
- https://clinicaltrials.gov/ (NCT03157128, NCT04211337, NCT04194944, NCT04280081, 4. and NCT03899792)
- SEER Incidence (NSCLC): https://canques.seer.cancer.gov/cgi 5. bin/cq_submit?dir=seer2016&db=3&rpt=TAB&sel=1^0^0^76,107^2,19^0^0^0,22&y=Site^7 6,107^Age%20at%20diagnosis^0,22&x=Year%20of%20diagnosis^2,19&dec=4,4,4&templa te=nul
- 6. SEER Stage Distribution (NSCLC): https://canques.seer.cancer.gov/cgibin/cq_submit?dir=surv2016&db=104&rpt=TAB&sel=^9^0^0^0,7&y=Age%20at%20diagnos is^0,7&x=Statistic%20type^1,2,3,4,5&dec=0,1,1,1,1&template=null
- 7. SEER Data by Histology (NSCLC): https://seer.cancer.gov/csr/1975_2016/browse_csr.php?sectionSEL=15&pageSEL=sect_1 5_table.28
- NSCLC Meta-analyses Collaborative Group, 2010. Lancet, 375(9722):1267-77. 8.
- 9. Simeone, Jason C., et al. "Treatment patterns and overall survival in metastatic non-smallcell lung cancer in a real-world, US setting." Future Oncology 15.30 (2019): 3491-3502.
- SEER Incidence (TC): <u>https://canques.seer.cancer.gov/cgi-</u>
 - bin/cq_submit?dir=seer2016&db=3&rpt=TAB&sel=1^0^0^76,107^2,19^0^0^0,22&y=Site^76, 107^Age%20at%20diagnosis^0,22&x=Year%20of%20diagnosis^2,19&dec=4,4,4&template =null
- 11. SEER Data by Histology (TC): https://seer.cancer.gov/csr/1975_2016/browse_csr.php?sectionSEL=26&pageSEL=sect_26 _table.22
- 12. Randle et al., 2017. Surgery, 161(1): 137-146.
- 13. Sippel et al., 2008. Oncologist, 13(5): 539.
- 14. Wells et al., 2013. The Journal of Clinical Endocrinology & Metabolism, 98(8): 3149-3164.
- 15. Wells et al., 2015. Thyroid, 25(6):567-610.
- 16. Tsang et al., 1998. Cancer, 82(2): 375-388.
- 17. Agrawal et al., 2014. Cell, 159(3): 676-690.
- 18. Guerra et al., 2010. Endocrine Journal, 58(1):31-8.
- 19. Adeniran et al., 2006. The American journal of surgical pathology, 30(2): 216-222.