



**Consolidating Methods of Cost-utility Analysis for Newborn Screening of** Spinal Muscular Atrophy: A Systematic Review

<u>Yewon Jang<sup>1</sup></u>, Ahyoung Kim<sup>1</sup>, Hankil Lee<sup>1\*</sup>

<sup>1</sup> College of Pharmacy, Ajou University, South Korea (Presenting Author: jyw1130@ajou.ac.kr), \*(Corresponding Author: hankil@ajou.ac.kr)

**KEYWORDS** 

Spinal Muscular Atrophy, Rare Disease, Newborn Screening, Cost-utility Analysis, Systematic Review

# BACKGROUND

## What is Spinal Muscular Atrophy(SMA)?

Spinal muscular atrophy (SMA) is a **rare and fatal genetic disorder** affecting 1 of 6,000-10,000 birth. Symptoms of SMA include progressive muscle degeneration which leads to respiratory failure and death. SMA is diagnosed by genetic testing of the SMN1/2 genes.

## RESULTS

#### **LITERATURE SEARCH (FIGURE 1)**

• Among the 75 studies screened, **five CUA** studies were ultimately included.

## **DATA EXTRACTION** (TABLE 2, 3)

## Why is Newborn Screening essential?

Early detection of SMA through newborn screening (NBS) is essential for pre-symptomatic treatmen. Earlier treatment leads to more effective treatment which ultimately leads to saving **costs** involved with the disease.

## Importance of Conducting a Cost-Utility Analysis

The gene therapies available for SMA – Nusinersen, Onasemnogene abeparvovec, Risdiplam – are effective but expensive. NBS can save healthcare costs by enabling early diagnosis and treatment. A cost-utility analysis (CUA) of NBS for SMA assesses the economic **Single Provided A cost-utility** benefits of gene therapies, supporting better policy decisions.

# **OBJECTIVES**

We aimed to *summarize the methods and data resources of CUA of NBS for SMA* by systematically reviewing the related studies.

## METHODS

## LITERATURE SEARCH

- Database: PubMed, Embase, Cochrane Library databases
- Date: March 20th 2024.
- Inclusion/ Exclusion criteria(TABLE 1): Relevant studies were selected based on

#### Study Characteristics

• Each study was conducted in a **different country** and published after 2020.

## Treatment

• All studies included treatments for SMA after diagnosis. Treatments included in the study depended on the timing of their approvals.

## Modeling Approach

- Three studies employed **decision tree plus Markov model**, while two studies utilized **Markov model**. Decision tree was designed to capture the initial NBS outcomes, Markov model was designed to project health outcomes and cost.
- The key common health states were permanent ventilation, not sitting, sitting, walking and death.

## Data Resources

- Efficacy data of treatments derived mostly from clinical trials of each treatment and only one study had used real-world data from observational study in Belgium between 2018-2022.
- <u>Costs</u> were sourced from list price, local studies, literature or direct calculation from questionnaires or pilot NBS program.

## **RISK OF BIAS**

• The reporting quality of studies is **valid from 82% to 93%** (median 86%).

## **TABLE 2. Study Characteristics**

| Study<br>No. | Author<br>(Year)     | Country       | Treatment                                          | Comparator                                                                                     |  |
|--------------|----------------------|---------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| 1            | Jalali<br>(2020)     | United States | Nusinersen                                         | No treatment/No NBS<br>Vs<br>NBS/No treatment<br>Vs<br>Treatment/No NBS<br>Vs<br>Treatment/NBS |  |
| 2            | Shih<br>(2021)       | Austrailia    | Nusinersen,<br>Onasemnogene abeparvovec            |                                                                                                |  |
| 3            | Velikanova<br>(2022) | Netherlands   | Nusinersen,<br>Onasemnogene abeparvovec            |                                                                                                |  |
| 4            | Weidlich<br>(2023)   | England       | Nusinersen,<br>Onasemnogene abeparvovec, Risdiplam | NBS vs No NBS                                                                                  |  |
| 5            | Dangouloff<br>(2024) | Belgium       | Nusinersen,<br>Onasemnogene abeparvovec, Risdiplam |                                                                                                |  |



SPINRAZA<sup>®</sup>

zolgensma®

(onasemnogene abeparvovec-xioi)

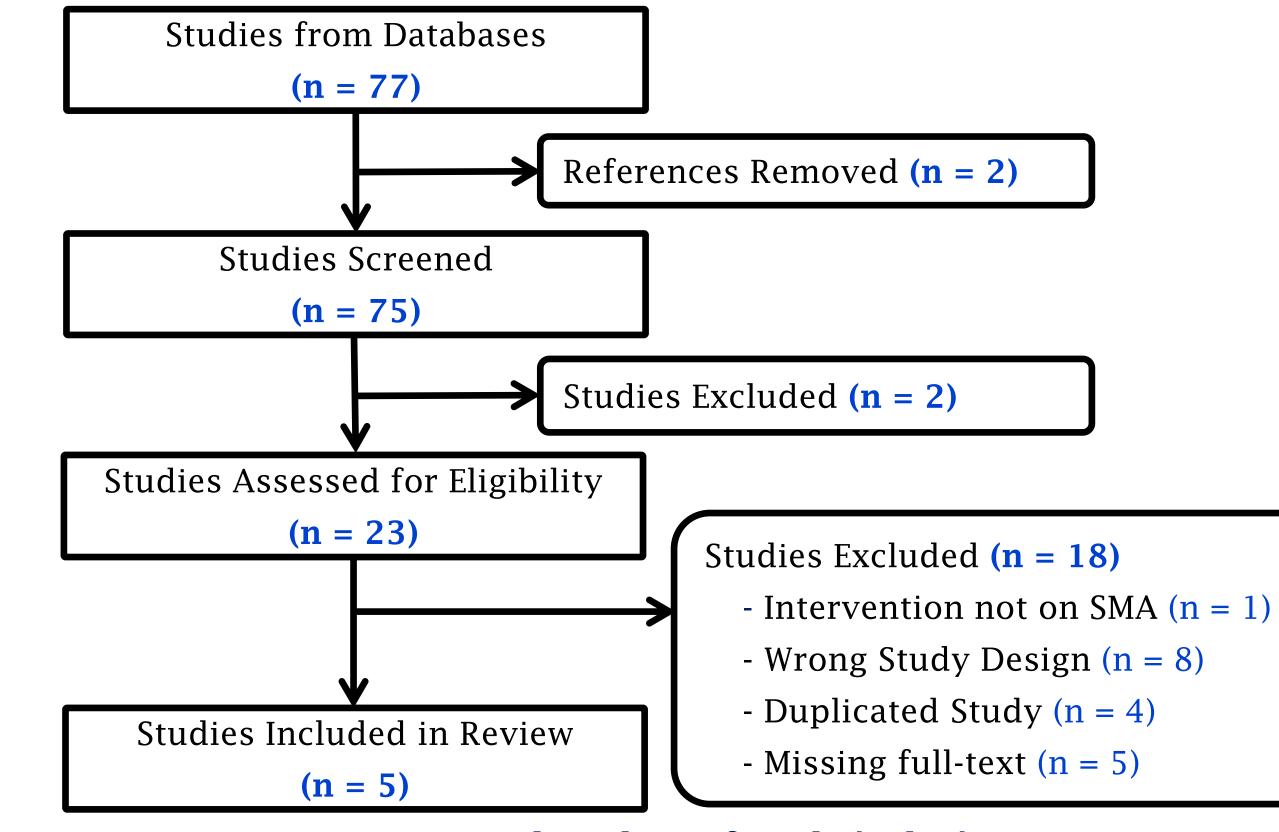
ispension for intravenous infusior

(nusinersen) <sup>injection</sup> 12 mg/5 mL

pre-defined criteria. The screening process adhered to the PRISMA<sup>1)</sup> guidelines.

#### **TABLE 1. Inclusion / Exclusion Criteria**

| Inclusion Criteria                              | Exclusion Criteria                                  |
|-------------------------------------------------|-----------------------------------------------------|
| - Study intervention on newborn screening       | - Study intervention not on newborn screening       |
| - Study intervention on spinal muscular atrophy | - Study intervention not on spinal muscular atrophy |
| - Cost-effectiveness study                      | - Not a cost-effectiveness study                    |


## DATA EXTRACTION

• Author, published year, country, treatment, comparator, modeling approach, health states, perspective, efficacy data, utility and cost.

## **RISK OF BIAS**

• Assessment tool: 2022 CHEERS<sup>2)</sup> checklist.

1) Preferred Reporting Items for Systematic reviews and Meta-Analyses 2) Consolidated Health Economic Evaluation Reporting Standards



## TABLE 3. Model & Data input resources

| Study<br>No. | Modeling<br>Approach      | Perspective | Time<br>Horizon            | Efficacy                                          | Utility                                        | Cost                                         |
|--------------|---------------------------|-------------|----------------------------|---------------------------------------------------|------------------------------------------------|----------------------------------------------|
| 1            | Markov                    | Societal    | 30<br>months               | RCT                                               | Literature                                     | Literature, CPT<br>codes                     |
| 2            | Decision Tree<br>+ Markov | Societal    | 5 and 60<br>years          | RCT                                               | -<br>Literature                                | Pilot NBS<br>program, Local<br>study         |
| 3            | Decision Tree<br>+ Markov | Payer       | Lifetime<br>(100<br>years) | RCT                                               | Literature                                     | Local study,<br>Literature                   |
| 4            | Decision Tree<br>+ Markov | Payer       | Lifetime<br>(100<br>years) | RCT<br>(short-term),<br>Literature<br>(long-term) | Literature                                     | Local study,<br>List price                   |
| 5            | Markov                    | Payer       | Lifetime                   | Real-World<br>Data                                | Measured with<br>'Health Utilities<br>Index 2' | Questionnaire<br>(patients or<br>caregivers) |

FIGURE 1. Flow chart of study inclusion

### **CONFLICT OF INTEREST**

All authors declare that they have no conflicts of interest.

#### ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(No.RS-2023-00276504).

# DISCUSSION

- For 4 out of 5 studies derived treatment efficacy from RCTs, while the most recent study utilized real-world data suggesting that data on SMA patients undergoing gene-therapy has accumulated.
- Five CUAs were conducted across different countries, with significant difference in cost input resources between studies. This emphasizes the importance of developing country-specific CUAs.

## CONCLUSIONS

This review aids in structuring cost-utility analysis to fit specific national contexts and the findings from this study can provide reliable data inputs for future cost-utility analysis studies evaluating newborn screening for SMA