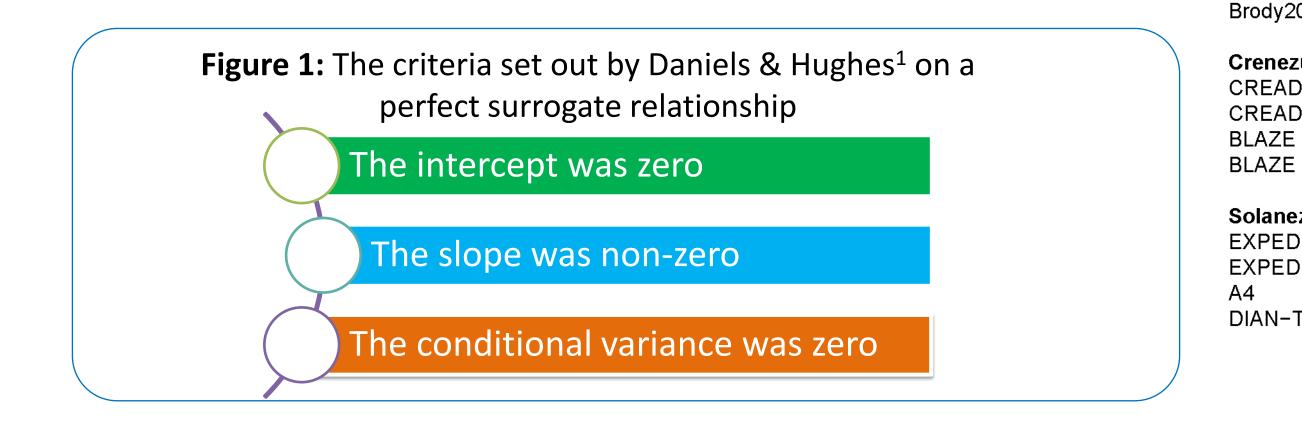


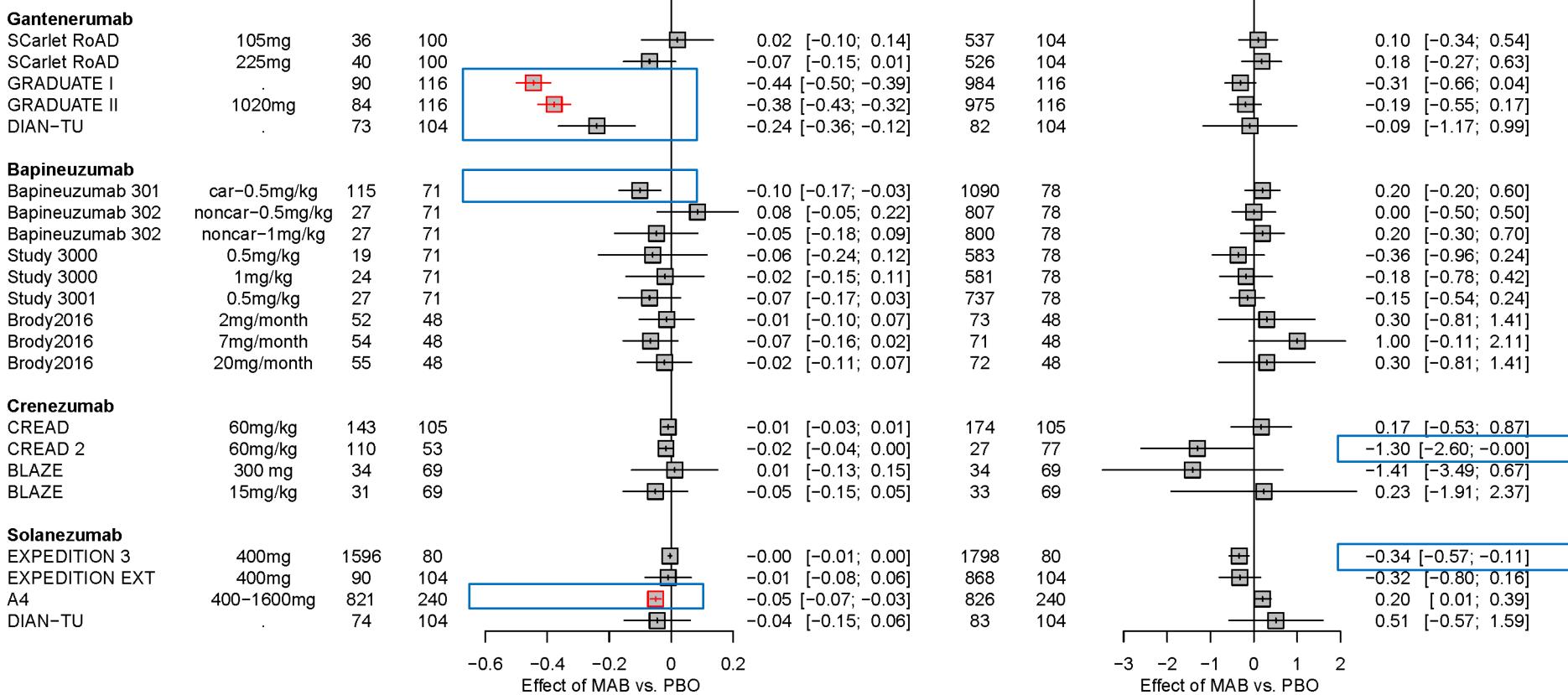
Evaluating Amyloid-Beta as a Surrogate Endpoint for Clinical Function in Alzheimer's Disease

Sarah Ren¹, Janharpreet Singh², Sandro Gsteiger³, Ben Reed², Christopher Cogley², Keith R Abrams⁴, Dalia Dawoud⁵, Rhiannon K Owen⁶, Paul Tappenden¹, Terence J Quinn⁷, Sylwia Bujkiewicz²

¹Sheffield Centre for Health and Related Research, University of Sheffield, UK; ²Biostatistics Research Group, Department of Population Health Sciences, University of Leicester, UK; ³F. Hoffman-La Roche Ltd, Basel, Switzerland; ⁴Department of Statistics, University of Warwick, UK; ⁵National Institute for Health and Care Excellence, London, UK; ⁶Population Data Science, Swansea University Medical School, Swansea University, UK; ⁷School of Cardiovascular and Metabolic Health, University of Glasgow, UK

Background


The use of amyloid-beta (Aβ) clearance to support regulatory approvals of drugs in Alzheimer's disease remains controversial. This research aims to evaluate the surrogate **relationship** between **treatment effects on Aβ and clinical** function, measured by Clinical Dementia Rating - Sum Of Boxes (CDR-SOB) using evidence from randomised controlled trials (RCTs) of anti-A β monoclonal antibodies (MABs).


/lethods	
_	

Study	Dose	Ν	Timepoint	Amyloid-beta (SUVR)	95% CI	Ν	Timepoint	CDR-SOB	95% CI
Aducanumab									
EMERGE	low	193	78		-0.18 [-0.21; -0.15]	578	78		-0.26 [-0.56; 0.04]
EMERGE	high	202	78	<u>₽</u>	-0.28 [-0.31; -0.25]	587	78		-0.39 [-0.69; -0.09]
ENGAGE	low	262	78		-0.17 [-0.19; -0.14]	664	78		-0.18 [-0.47; 0.11]
ENGAGE	high	236	78		-0.23 [-0.26; -0.21]	628	78		0.03 [-0.26; 0.32]
PRIME	1mg/kg	59	54	8	-0.06 [-0.09; -0.04]	62	54		-0.06 [-1.12; 1.00]
PRIME	3mg/kg	64	54		-0.15 [-0.17; -0.12]	66	54	— <u> </u>	-0.45 [-1.48; 0.58]
PRIME	6mg/kg	61	54		-0.22 [-0.25; -0.20]	65	54		-0.68 [-1.74; 0.38]
PRIME	Titration	59	54		-0.19 [-0.22; -0.15]	60	54	— <u>B</u> –	-0.73 [-1.79; 0.33]
PRIME	10mg/kg	54	54	<u>₽</u>	-0.28 [-0.30; -0.25]	62	54		-1.08 [-2.23; 0.07]
Lecanemab									
BAN2401-G000-201	2.5mg/kg bw	111	79		-0.10 [-0.14; -0.05]	195	79	— 	-0.27 [-0.99; 0.45]
BAN2401-G000-201	5mg/kg mth	111	79		-0.14 [-0.18; -0.09]	197	79		0.21 [-0.50; 0.92]
BAN2401-G000-201	5mg/kg bw	112			-0.20 [-0.25; -0.16]	228	79	-6-	-0.04 [-0.61; 0.53]
BAN2401-G000-201	10mg/kg mth	170	79		-0.23 [-0.26; -0.20]	310	79		-0.25 [-0.62; 0.12]
BAN2401-G000-201	10mg/kg bw	125	79		-0.31 [-0.35; -0.27]	245	79		-0.40 [-0.91; 0.11]
Clarity AD	10mg/kg bw	415			-0.39 [-0.42; -0.37]	1471			-0.45 [-0.67; -0.23]
Donanemab									
TRAILBLZAER-ALZ	700-1400	181	76 -		-0.55 [-0.60; -0.51]	183	76		-0.36 [-0.83: 0.11]
TRAILBLZAER-ALZ					-0.55 [-0.60; -0.51]				
	700-1400mg	1304			-0.51 [-0.53; -0.50]	1270	70		-0.70 [-0.95; -0.45]

Figure 2: Forest plot illustrating the treatment effects of MABs versus placebo (PBO) on Aß level and CDR-SOB

Data from RCTs reporting treatment effects on A^β levels and CDR-SOB of MABs were identified through literature review. A Bayesian meta-analysis model¹ was applied, with the intercept, slope and conditional variance parameters quantifying the association. The surrogate relationship for individual treatments was evaluated using subgroup analyses and hierarchical models^{2,3} to borrow information across treatments.

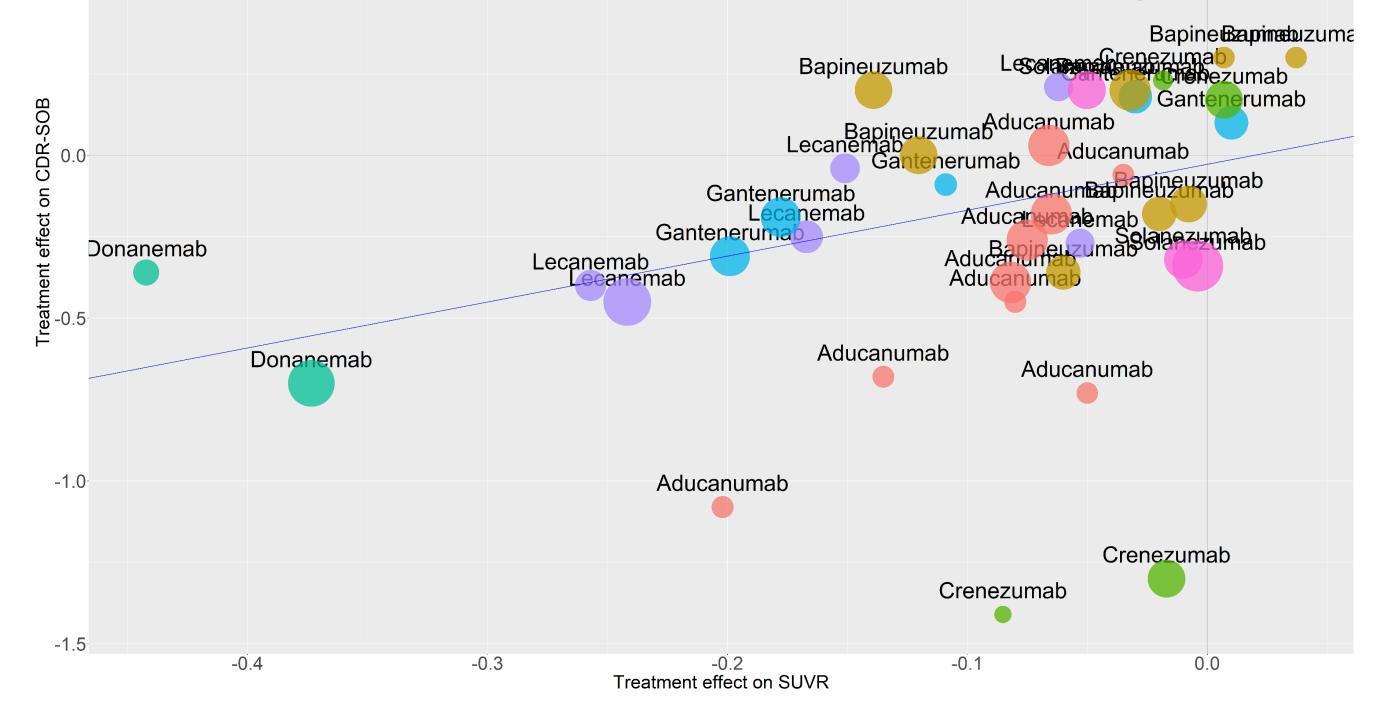

The timepoint is in weeks and the treatment effect is measured by the difference in change from baseline to the follow-up time point vs. placebo (PBO). Estimates in red were imputed by applying a conversion formula based on the radioactive tracer used in the PET scan, where the effect on amyloid-beta was reported on the Centiloid scale alone.

Figure 3: Bubble plot of the overall surrogate relationship between treatment effects on Aβ level and CDR-SOB

Results

1. The review identified 23 RCTs with 39 treatment contrasts (Figure 2) for seven MABs, including aducanumab, bapineuzumab, crenezumab, donanemab,

gantenerumab, lecanemab and solanezumab.

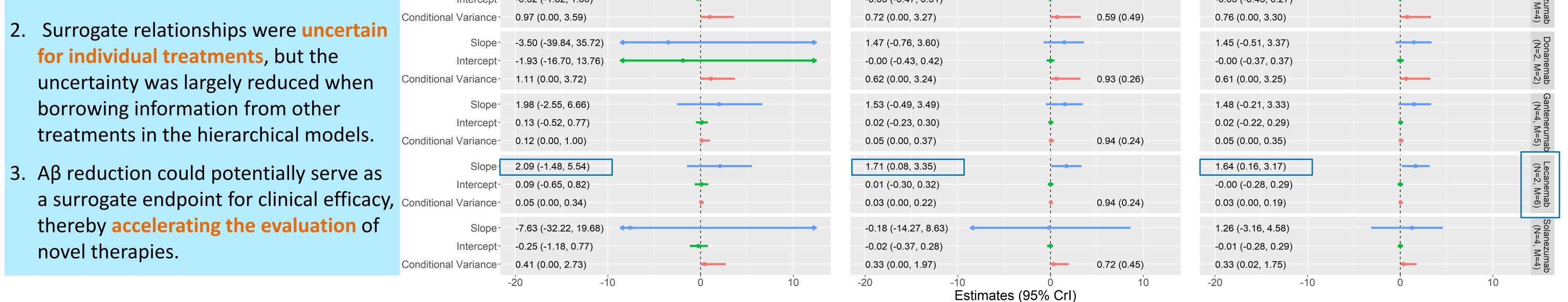

- 2. The overall surrogate relationship (Figure 3) between treatment effects on Aβ level (on the standardised uptake value ratio scale) and CDR-SOB across all MABs was strong: with the close to zero intercept at -0.03 (95% Crl: -0.16, 0.11), a positive slope of 1.41 (95% CrI: 0.6, 2.21) and a small conditional variance of 0.02 (95% Crl: 0, 0.05).
- 3. The results showed large uncertainty around the surrogacy parameters for individual treatments (Figure 4). The use of the hierarchical model reduced the **uncertainty** around the key parameters. The reduction in the width of CrI was 71% (51%-95%) for slope and 28% (7%-65%) for conditional variance, when comparing results from the full-exchangeability model with subgroup analyses.

Figure 4: Forest plot of estimates of slope, intercept and conditional variance for the evaluation of individual surrogate relationship between treatment effects on Aβ level and CDR-SOB

Conclusions

1. The effect on A β level was a good surrogate endpoint for the effect on CDR-SOB when assuming a common surrogate relationship across all included treatments.

		Subgroup Analysis		Partial Exchangeability M	lodel	Full Exchangeability Model		
	Slope	5.57 (-0.82, 11.82)	2.59 (-0.03, 6	6.92)	——	2.17 (0.05, 5.69)		Adu (N=
	Intercept-	0.18 (-0.37, 0.70)	-0.01 (-0.27,	0.26)		-0.03 (-0.27, 0.21)	•	Aducanumab (N=3, M=9)
	Conditional Variance-	0.03 (0.00, 0.18)	0.03 (0.00, 0	.16)	0.85 (0.36)	0.03 (0.00, 0.16)	•	mab =9)
1	Slope-	-0.46 (-5.76, 5.03)	0.89 (-3.06, 3	3.46)	-	1.06 (-1.96, 3.30)	• · · · · · · · · · · · · · · · · · · ·	Bapin (N=
า	Intercept-	0.02 (-0.35, 0.44)	0.03 (-0.21, 0	0.28)		0.03 (-0.19, 0.27)		ieuzu 5, M
	Conditional Variance-	0.05 (0.00, 0.31)	0.05 (0.00, 0	.26)	0.87 (0.34)	0.04 (0.00, 0.24)	1 • • •	umab =9)
	Slope-	11.43 (-25.09, 48.96)	6.88 (-9.47, 3	39.36)	• • • •	1.74 (-1.83, 5.84)		Crer (N=
	Intercept-	-0.32 (-1.82, 1.00)	-0.03 (-0.47,	0.31)		-0.03 (-0.43, 0.27)	•	nezu =4, N

References

[1] Daniels and Hughes (1997): Meta-analysis for the evaluation of potential surrogate markers. Statistics in Medicine.

[2] Bujkiewicz et al. (2019): NICE DSU Technical Support Document 20: Multivariate meta-analysis of summary data for combining treatment effects on correlated outcomes and evaluating surrogate endpoints. [3] Papanikos et al. (2020): Bayesian hierarchical meta-analytic methods for modelling surrogate relationships that vary across treatment classes using aggregate data. Statistics in Medicine. This research was funded by the Medical Research Council [MR/T025166/1].