Evaluating the Clinical and Socioeconomic Impact of Improved CKD Diagnosis and Adherence to Guideline-Directed Medical Therapy in Australia, Brazil, and China: An Impact CKD Analysis

Rao N¹, Chen J², Priest S³, Brown S³, Moura AF⁴, Zhao MH⁵, Chadban S⁶

¹AstraZeneca, Cambridge, UK, ²AstraZeneca, Gaithersburg, MD, USA, ³EVERSANA, Burlington, ON, Canada, ⁴Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil, ⁵Renal Division, Peking University First Hospital, Beijing, PR. China, ⁶Royal Prince Alfred Hospital, Sydney, Australia

Poster Session 3

Acceptance Code: HPR137

E Key Findings

Increased diagnosis and improved adherence to guideline-directed medical therapy (GDMT) in patients with CKD was projected to result in:

46-53% reduction in dialysis prevalence

39-45% reduction in RRT costs

Conclusions \dot{Q}

- This analysis shows that improved CKD diagnosis and adherence to GDMT can drastically reduce dialysis prevalence, cardiovascular and acute kidney injury events, and healthcare costs across Australia, Brazil, and China.
- These findings highlight the need for policies that incentivize early detection and optimized management of CKD to mitigate the burden on patients, healthcare systems, and society.

Introduction

Results – Clinical

 CKD is underdiagnosed and undertreated despite availability of interventions effective in delaying progression and reducing clinical events.

Objective

To comprehensively illustrate the clinical and socioeconomic benefits of increased diagnosis and improved adherence to GDMT across countries with varying demographics, health system financing, and access-to-care.

Methods

- Three country settings (Australia, Brazil, and China) were simulated for 25 years using the validated IMPACT CKD model.
- Two scenarios were compared: Current practice versus target practice (25%) increased diagnosis plus 75% adherence to GDMT including glucoselowering, lipid-lowering, antihypertensive, and lifestyle interventions).
- Various sources were used to establish current use rates for GDMT components. Target use was set to 75% of eligible patients, with eligibility informed by guidelines.

Table 1. Comparison of current therapy use rates for patients with CKD, and 75% of target therapy use for eligible patients based on guideline recommendations

			Stage	Stage	Stage	Stage	Stage
laton vontion	Comorbidity	Ctatura of Llood	Clage	Olago	Olago	Olago	Juage

Figure 2. Dialysis (cumulative prevalent patient years) is projected to decrease by over 45% across three countries with improved diagnosis and GDMT adherence compared to current practice over 25 years

Current practice Diagnosis + Tx

Figure 3. Cumulative CV and AKI events are projected to decrease across three countries following improved diagnosis and GDMT adherence compared to current practice over 25 years

Intervention	Comorbidity	Status of Use	1	2	3	4	5
RASi ^b (ACEi		Current use ¹	55.9%	55.9%	55.9%	55.9%	55.9%
or ARB)		Target use ^{2,3}	75.0%	75.0%	75.0%	75.0%	75.0%
MRA	HTN	Current use ⁴	10.0%	10.0%	8.0%	5.0%	5.0%
		Target use ^{5,6}	11.8%	14.5%	20.0%	12.8%	5.0%
SGLT-2i	Diabetes	Current use ⁷	18.2%	18.4%	15.5%	6.6%	6.4%
		Target use ^{6,8}	67.5%	67.5%	67.5%	49.5%	6.4%
	No	Current use ^{8.9}	10.0%	10.0%	10.0%	6.6%	6.4%
	diabetes	Target use ^{6,8}	67.5%	67.5%	67.5%	49.5%	6.4%
	Diabataa	Current use ¹⁰	6.1%	4.2%	3.0%	2.4%	2.6%
GLF-IIa	Diabeles	Target use ^{5,10,11}	6.1%	4.2%	3.0%	6 12.8% 6 6.6% 6 49.5% 6 6.6% 6 49.5% 6 2.4% 5 25.5% 6 67.5% 6 53.0% 6 66.0%	2.6%
Lifestyle	Δον	Current use ¹²	34.0%	34.0%	17.0%	11.0%	11.0%
(Exercise)	Апу	Target use ¹³	67.5%	67.5%	67.5%	67.5%	67.5%
Statins	Any	Current use ¹⁴	24.1%	24.1%	45.1%	53.0%	53.0%
		Target use ¹⁵	66.0%	66.0%	66.0%	66.0%	66.0%

^aTarget use was defined as 75% of guideline-directed use

^bDue to a lack of stage-specific usage data, the same current use was assumed across all stages

Results – Economic

Figure 1. RRT costs are projected to decrease by 39-45% by 2047 with improved diagnosis and GDMT adherence, with total costs decreasing by 1-17%

Australia Brazil China

Current practice Diagnosis + Tx Percentage change

Figure 4. More than 6M fewer cumulative deaths are projected across the three countries over 25 years with improved diagnosis and GDMT adherence compared to current practice

Results – Societal

Table 2. Improved diagnosis and GDMT adherence will result in incrementally greater net workdays, GDP, FTEs, and tax revenue among employed patients and caregivers.

	Net workdays due to:						
	Patient absenteeism	PatientPatientCaregiverabsenteeismpresenteeismabsenteeism		Net GDP	Net FTEs	revenue	
Australia	↑ 38.0M (3.2%)	↑ 33.0M (3.2%)	↑ 54.4M (2.9%)	↑ 57.4B (3.3%)	↑ 375.3K (3.1%)	↑ \$3.3B (3.0%)	
Brazil	↑ 1.7B (8.0%)	↑ 1.5B (7.8%)	↑ 1.9B (7.7%)	↑ 2.8T (8.0%)	↑ 10.5M (7.8%)	↑R\$159.7B (7.8%)	
China	↑ 2.6B (4.1%)	↑ 2.2B (4.0%)	↑ 3.4B (3.7%)	↑ 3.9T (4.2%)	↑ 23.6M (3.9%)	↑ ¥467.2B (3.8%)	

References

¹Sundström J, et al. Lancet Reg Health Eur. 2022 Jun 30;20:100438. doi: 10.1016/j.lanepe.2022.100438; ²KDIGO Blood Pressure Work Group. Kidney Int. 2021 Mar;99(3S):S1-S87. doi: 10.1016/j.kint.2020.11.003; ³KDIGO CKD Work Group. Kidney Int. 2013 Jan;3(1)1-150. doi:10.1038/kisup.2012.73; ⁴Magvanjav O, et al. The Journal of Clinical Hypertension. 2018;21(1), 91–101. doi: 10.1111/jch.13429; ⁵Liu B, et al. J Clin Hypertens (Greenwich). 2020;22(1):57-64. doi:10.1111/jch.13761; ⁶KDIGO Diabetes Work Group. Kidney Int. 2022;102 (5S):S1-S127. doi: 10.1016/j.kint.2022.06.008; ⁷CDC 2020, https://nccd.cdc.gov/ckd/detail.aspx?Qnum=Q719; ⁸Tangri N, Clinical Expert Opinion; ⁹Chadban S, Clinical Expert Opinion; ¹⁰Rhee JJ, et al. J Diabetes Complications. 2019 Nov;33(11):107423. doi: 10.1016/j.jdiacomp.2019.107423; ¹¹Tang S, et al. Ann Intern Med. 2023 Apr;176(4):582-583. doi: 10.7326/M22-3051; ¹²Wilkinson TJ, et al. Nephrol Dial Transplant. 2021 Mar 29;36(4):641-649. doi: 10.1093/ndt/gfz235; ¹³Clinical Expert Opinion; ¹⁴Mefford MT, et al. J Am Heart Assoc. 2019 Jan 22;8(2):e010640. doi: 10.1161/JAHA.118.010640; ¹⁵Schneider MP, et al. Kidney Int. 2015 Dec;88(6):1411-1418. doi: 10.1038/ki.2015.246

Acknowledgments

The authors would like to thank Isaac Bencomo and George Wharton from London School of Economics for their contribution. In addition, we would like to thank Anthony Zara, Bo Ren Long, and Victoria Barabash from EVERSANA for their continued support.

Abbreviations

ACEi = angiotensin-converting enzyme inhibitor; AKI = acute kidney injury; ARB = angiotensin 2 receptor blockers; B = billion; CKD = chronic kidney disease; CV = cardiovascular; FTE = full-time equivalent; GDMT = guideline-directed medical therapies; GDP = gross domestic product; GLP-1ra = glucagon-like peptide 1 receptor agonist; M = million; MRA = mineralocorticoid receptor antagonist; RASi = renin-angiotensin system inhibitor; RRT = renal replacement therapy; SGLT-2i = sodium glucose transport protein 2 inhibitor; T = trillion; Tx = therapy.

