Medtronic

EE764

Cost analysis of rechargeable vs. non-rechargeable devices for deep brain stimulation in parkinson's disease treatment in Spain.

Valldeoriola F¹, González A², Álvarez M², Tito F³, Monje J² ¹Clínic Hospital, Barcelona, Spain, ²Medtronic Ibérica, S.A., Madrid, Spain, ³Medtronic Italia S.p.A., Milan, MI, Italy

Objective

The extended battery life of rechargeable devices for deep brain stimulation (DBS) significantly reduces the need for internal pulse generator (IPG) replacements, potentially resulting in long-term savings¹.

We aimed to evaluate the economic impact of using rechargeable versus non-rechargeable devices in patients with Parkinson's Disease (PD) from a tertiary-hospital perspective over a 5-year time horizon.

Methods

- For the rechargeable device, a 15-years longevity was assumed, while for the non-rechargeable device 4 years were considered.
- Long-term projections of the results were made by extending the time horizon up to 15 years, and a deterministic sensitivity analysis was performed to assess the robustness of the results.
- The model's inputs were endorsed by a clinical expert.

Results

- Long-term projections showed increased savings as the time horizon extends. (Table 2)
- The results from the univariate sensitivity analysis are shown in Figure 3, and they confirm the robustness of the model.

Table 1: Unit costs and parameters considered in the analysis.

Non-rechargeable Rechargeable device

- A cost analysis was developed to follow a hypothetical cohort of 35 patients, capturing the initial implant and subsequent IPG replacements over time.
- The unit cost for insertion and replacement procedures was sourced from Spanish data and expressed in €, 2024². (Table 1)
- A scenario where 100% of patients use a nonrechargeable device was compared to a scenario where a rechargeable device is available and used by 25-100% of patients.
- Introducing the rechargeable device could reduce up to 1 IPG replacement per patient over 5 years, leading to potential savings of € 12,651 per patient compared to a non-rechargeable device (€ 38,035 vs. € 50,686). (Figure 1)
- For the total patient cohort, the model suggested savings of € 110,694, € 221,388, € 332,082, and € 442,777 with 25%, 50%, 75% and 100% usage of the rechargeable device, respectively. (Figure 2)
- These savings offset the higher initial investment once the first replacement of the non-rechargeable system is avoided.

Total implants	35		
Cost of the device (first implant)	€ 24,758	€33,110	
Cost of the device (replacements)	€ 16,078	€ 24,430	
Cost of the implant procedure ²	€ 4,924	€ 4,924	
Battery longevity	4 years	15 years	

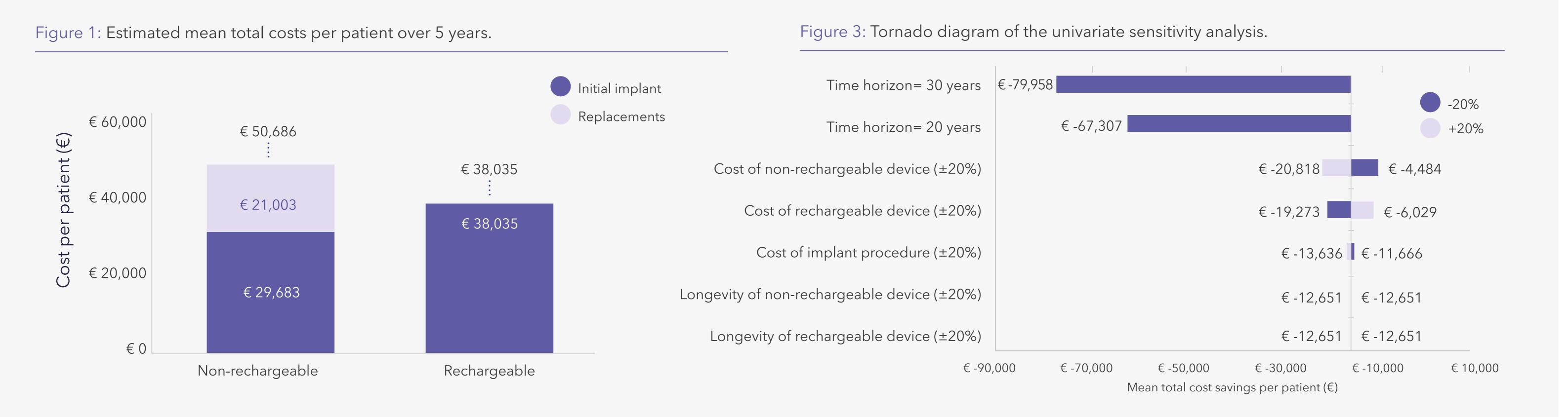


Figure 2: Total costs considering the entire patient cohort and varying percentages of rechargeable device usage over 5 years.

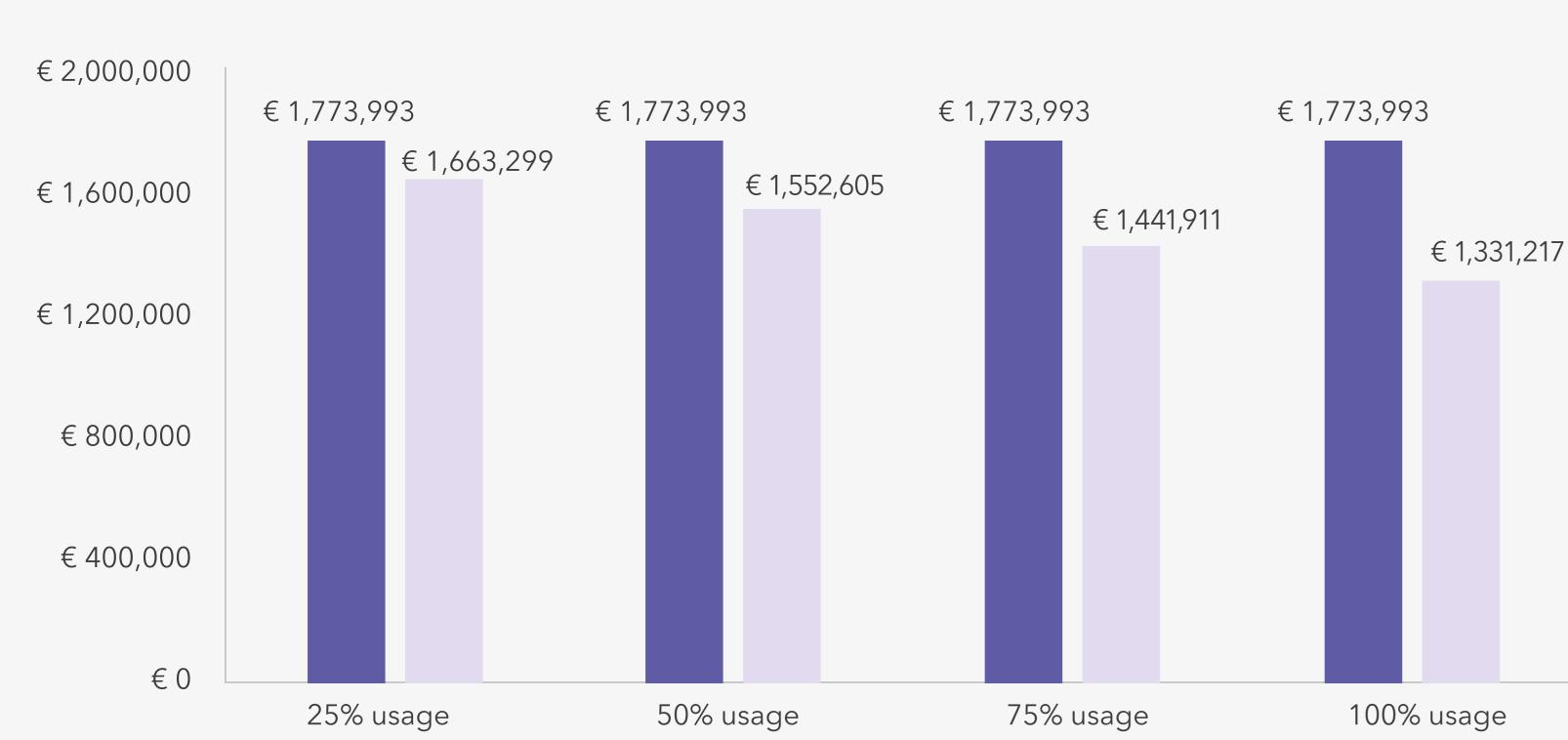
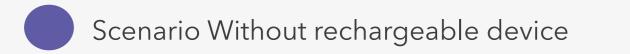



Table 2: Budget impact analysis of the introduction of rechargeable device considering the total patient cohort and long-term projections.

25% usage of the rechargeable device	Year 1	Year 5	Year 10	Year 15
Scenario WITHOUT rechargeable device	€ 1,038,897	€ 1,773,993	€ 2,509,090	€ 3,244,186
Scenario WITH rechargeable device	€ 1,111,977	€ 1,663,299	€ 2,214,621	€ 3,022,798
Savings/Cost Increase	€73,080	€ -110,694	€ -294,468	€-221,338
50% usage of the rechargeable device	Year 1	Year 5	Year 10	Year 15
Scenario WITHOUT rechargeable device	€ 1,038,897	€ 1,773,993	€ 2,509,090	€3,244,186
Scenario WITH rechargeable device	€ 1,185,057	€ 1,552,605	€ 1,920,153	€ 2,801,410
Savings/Cost Increase	€ 146,160	€-221,388	€ -588,937	€-442,777
75% usage of the rechargeable device	Year 1	Year 5	Year 10	Year 15
Scenario WITHOUT rechargeable device	€ 1,038,897	€ 1,773,993	€ 2,509,090	€ 3,244,186
Scenario WITH rechargeable device	€ 1,258,137	€ 1,441,911	€ 1,625,685	€ 2,580,021
Savings/Cost Increase	€ 219,240	€-332,082	€ -883,405	€ -664,165
100% usage of the rechargeable device	Year 1	Year 5	Year 10	Year 15
Scenario WITHOUT rechargeable device	€ 1,038,897	€ 1,773,993	€ 2,509,090	€ 3,244,186
Scenario WITH rechargeable device	€ 1,331,217	€ 1,331,217	€ 1,331,217	€ 2,358,633
Savings/Cost Increase	€ 292,320	€ -442,777	€ -1,177,873	€-885,553

Scenario With rechargeable device

Conclusion

From a Spanish hospital perspective, using DBS rechargeable devices for eligible PD patients could significantly reduce long-term treatment costs, while improving hospital efficiency.

References

Rizzi M, Messina G, Penner F, D'Ammando A, Muratorio F, Franzini A. Internal Pulse Generators in Deep Brain Stimulation: Rechargeable or Not? World Neurosurg. 2015 Oct;84(4):1020-9
Oblikue Consulting. Base de datos de costes sanitarios eSalud [Internet]. Barcelona: Oblikue Consulting; 2015. Available at: http://www.oblikue.com/bddcostes/ (accessed June 2024)

All rights reserved. Funded by Medtronic Ibérica S.A

ISPOR Europe 2024 17th-20th November, Barcelona, Spain