Systematic Review With Indirect Comparison of Efficacy and Safety of Dupilumab Versus Omalizumab for Severe Asthma With Allergic Phenotype

Barbosa A[1], Magro F [1], Buttelli GBM [1], Prioli RNT [1], Dorneles G [2], Marmett B [2], Schneider NB [2], Migliavaca CB [2], Falavigna M [2] [1] Sanofi, São Paulo, Brazil [2] HTA Unit, Inova Medical, Porto Alegre, Brazil Contact details: Aline Barbosa Email: aline.barbosa@sanofi.com

INTRODUCTION

Severe asthma is a condition with a significant impact on quality of life and morbidity¹. Currently, omalizumab is the only immunobiological agent covered by the Brazilian public health system for severe allergic asthma treatment².

OBJECTIVE

This study aims to compare the efficacy and safety of dupilumab, an IL-4/IL-13 signaling inhibitor, with omalizumab, an anti-IgE monoclonal antibody, in patients with severe allergic asthma to support coverage decisions.

METHODS

We searched Medline/Pubmed, EMBASE and Cochrane Central for double-blind randomized trials evaluating dupilumab or omalizumab as add-on therapy to long-acting beta2-agonists (LABA) and inhaled corticosteroids on patients with severe allergic asthma (defined as total IgE \geq 30 IU/mL and sensitivity to \geq 1 perennial allergens).

Outcomes:

- Exacerbation rate;
- Forced expiratory volume in 1 second (FEV-1);
- Adverse events (AE) leading to treatment discontinuation.

Meta-analysis for direct and indirect comparisons was performed using a frequentist approach (netmeta package in R Software), using random-effects model to account for heterogeneity. Risk of bias was assessed with RoB2. Certainty of evidence (CoE) was rated using GRADE framework for network meta-analysis.

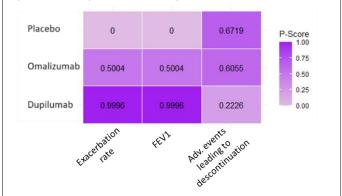
RESULTS

We identified four studies assessing dupilumab and eight studies assessing omalizumab. To ensure proper comparability and minimize intransitivity, we included only studies with adequate blinding and using as co-interventions inhaled corticosteroids in combination with LABA³⁻¹⁸.

RESULTS

Dupilumab reduces the exacerbation rate (Figure 1), and increases the FEV-1 compared to omalizumab (Figure 2). No statistical difference was observed in AE leading to treatment discontinuation (Figure 3). Dupilumab have a higher P-score for exacerbation rate and FEV-1 improvement, suggesting it is more effective in reducing exacerbations and improving lung function compared to omalizumab (Figure 4).

Figure 1: Network metanalysis estimates of interventions on asthma exacerbation rate in severe allergic asthma patients.							
Comparison	Relative Risk	RR	95%CI	Certainty of evidence			
Dupilumab x Placebo ← Omalizumab x Placebo Dupilumab x Omalizumab	*	0.74	[0.37; 0.62] [0.64; 0.86] [0.54; 0.88]	High Low Low			
0.4	0.9 1	1.1					


Figure 2: Network metanalysis estimates of interventions on FEV-1 in severe allergic asthma patients.

Comparison			Mean ifferenc	es	MD	95%CI	Certainty of evidence
Dupilumab x Placebo Omalizumab x Placebo Dupilumab x Omalizum	ab -0.1	0	0.1	0.2	0.08	[0.12; 0.20] [0.04; 0.11] [0.03; 0.13]	High Low Low

Figure 3: Network metanalysis estimates of interventions on adverse events leading to treatment discontinuation.

Comparison			elative Risk	e	RR	95%CI	Certainty of evidence
Dupilumab x Placebo Omalizumab x Placebo Dupilumab x Omalizumab	0.2	0.5	1	2	1.40	[0.50; 2.02] [0.75; 2.63] [0.28; 1.93]	Moderate Moderate Moderate

Figure 4: Heat map of P-Score ranking treatment in each outcome.

CONCLUSIONS

In this indirect comparison, dupilumab was associated with lower exacerbation rates and greater improvements in lung function in patients with severe allergic asthma.

References: 1. Global Initiative for Asthma. Global strategy for asthma management and prevention. Fontana: GINA; 2023; 2. Brasil. Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas: Asma [Internet]. Brasília CONITEC; 2023; 3. Brusselle G et al. J Allergy Clin Immunol Pract. 2023;11(3):873-884.e11; 4. Papadopoulos NG et al. Allergy. 2023;78(3):2157-65; 5. Wenzel S et al. Lancet. 2016;388(10039):31-44; 6. Castro M et al. N Engl J Med. 2018;378(6):2457-85; 8. Buhl R et al. Eur Respir J. 2002;20(1):73-78; 9. Busse W et al. J Allergy Clin Immunol. 2001;108(2):1849-99; 10. Busse W et al. J Allergy Clin Immunol. 2001;12(2):457-46; 11; 11. Hanania NA et al. Ann Intern Med. 2011;154(9):573-82; 12. Holgate ST et al. Clin Exp Allergy. 2004;34(4):632-8; 13. Humbert M et al. Allergy. 2005;6(3):309-16; 14. Solêr M et al. Eur Respir J. 2001;18(2):184-61; 15. Ohta K et al. Respirology. 2004;9(2):455-456; 15. Bardelas J et al. J Asthma. 2011;49(2):145-2; 12. Holgate ST et al. Clin Exp Allergy. 2004;34(7):673-8; 14. Humbert M et al. Allergy. 2005;6(3):309-16; 14. Solêr M et al. Eur Respir J. 2001;18(2):254-61; 15. Ohta K et al. Respirology. 2004;9(2):470-97-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunology. 2003;9(2):154-9. [UNDINE: Study funded by Sanofis; 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunology. 2003;9(2):154-9. [UNDINE: Study funded by Sanofis; 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunology. 2003;9(2):154-9. [UNDINE: Study funded by Sanofis; 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunolity. 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunolity. 2004;54(7):154-9. [UNDINE: Study funded by Sanofis; 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunolity. 2004;54(7):709-17; 18. Lannier BQ et al. Annalis of Allergy. Attana & Immunolity. 2004;54(7):154-9. [UNDINE: Study funded by Sanofis; 2004;54(2):154-9. [UNDINE: Study funded by Sanofis; 2004;