Budget impact analysis of ivosidenib in combination with azacitidine for the treatment of previously untreated mIDH1 positive acute myeloid leukaemia

(AML) patients, ineligible for intensive induction chemotherapy in Greece

Koulentaki M¹, Ravanidis S¹, Vellopoulou K¹, Karathanou F¹, Chotzagiannoglou V², Beletsi A², Kourlaba G³

¹Econcare LP, Athens, Greece, ²Servier Hellas Pharmaceuticals Ltd, Athens, Greece, ³Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece

ISPOR Europe 2024 | Barcelona, Spain |17 - 20 November 2024

Introduction

- Acute Myeloid Leukemia (AML) is a malignancy of hematopoietic stem cells, characterised by impaired cell differentiation, leading to the buildup of immature blood cells in the bone marrow and decreased production of healthy blood cells, diagnosed through bone marrow aspirates and peripheral blood examination [1, 2].
- AML can occur at any age but is most common in older adults, particularly those aged 85-89 [3], with a higher prevalence in males (57%) than females (43%) [4].
- AML treatment typically involves intensive chemotherapy (IC) with anthracyclines and high-dose cytarabine, followed by consolidation or stem-cell transplantation. For patients ineligible for IC, non-intensive therapies such as hypomethylating agents or venetoclax combined with azacitidine (AZA) are used [5-9].
- Ivosidenib (IVO), a targeted isocitrate dehydrogenase 1 mutated (mIDH1) inhibitor, is approved by European Medicines Agency (EMA), in combination with AZA for AML patients with mIDH1 mutations who are ineligible to receive standard induction chemotherapy [10].

Table 1: Eligible patient population inputs

IC

ineligible to receive

Number of % of Source patients patients **Incident AML** 0.005% 427 Internal data patients mIDH1 positive 8.00% 34 Bullinger 2017 [13] patients % of AML patients Internal data;

14

NICE TA 765 [14]

€1,380,295

Figure 1: Incremental budget impact analysis results

40.00%

€1,600,000 €1,400,000 €1,200,000 €1,000,000 €1,000,000 €815,453

Table 2: Treatment specific annual mortalities

	Annual mortalities	Source
lvosidenib + azacitidine	22.30%	Calculated based on the KM from AGILE June 30, 2022 data cut
Azacitidine	42.40%	Calculated based on the KM from AGILE June 30, 2022 data cut
Venetoclax + azacitidine	34.80%	Calculated based on the pseudo KM from VIALE-A ASH 2022
Decitabine	66.05%	Calculated based on the median OS reported in Cashen 2010 [15]

Table 3: Five- year market shares with and without lvosidenib

Market share in baseline scenario								
	Year 1	Year 2	Year 3	Year 4	Year 5			
lvosidenib + Azacitidine	0%	0%	0%	0%	0%			
Azacitidine	39%	33%	30%	30%	30%			
Venetoclax + Azacitidine	59%	66% 70%		70%	70%			
Decitabine	2%	1%	0%	0%	0%			
Market share in projected scenario								
	Year 1	Year 2	Year 3	Year 4	Year 5			
lvosidenib + Azacitidine	10%	20%	30%	40%	50%			
Azacitidine	29%	16%	8%	4%	4%			
Venetoclax + Azacitidine	59%	63%	62%	56%	46%			
Decitabine	2%	1%	0%	0%	0%			

EE282

• In the AGILE phase 3 clinical trial, the primary overall survival (OS) results were sustained with long-term follow-up, showing a median OS of 29.3 months for patients receiving IVO+AZA versus 7.9 months for those receiving placebo (PBO+ AZA) [11].

Objective

To estimate the budgetary impact from the introduction of IVO+AZA in previously untreated patients with mIDH1+ AML, ineligible for intensive induction chemotherapy in Greece.

Methodology

- An international BIM model was locally adapted to assess the budget impact of introducing IVO into the treatment mix for previously untreated AML patients with mIDH1, who are ineligible for IC (**Table 1**), from the perspective of the Greek National Public Payer (EOPYY).
- The model compares two scenarios: the "baseline scenario" (current market shares of available treatments) and the "projected scenario" (market share changes after IVO's introduction) over a five-year period (2025–2029).

Table 4: Dosing scheme and costs used in the analysis

Drug acquisition and route of adminis	stration							
Treatment Ur	nit Strength (mg)	Pack size	IV	SC	Oral	Sources		
Ivosidenib + Azacitidine								
Ivosidenib	250	60	0%	0%	100%			
Azacitidine	100	1	0%	100%	0%			
Azacitidine (monotherapy)	100	1	0%	100%	0%	AGILE SCR [16]; DiNardo 2020 [17];		
Venetoclax + Azacitidine						Local clinical experts.		
Venetoclax	100	112	0%	0%	100%			
Azacitidine	100	1	0%	100%	0%			
Decitabine	50	1	50%	50%	0%			
Concomitant Medication and Subsec	uent Treatments Co	osts						
Medicatio	n Unit strength (m	g or ml)	Pack size	Packa	age cost (€)	Source		
Ondansetro	n 4	-	15		11.91			
Meropener	n 1000		10		85.98			
Piperacillin sodium; tazobactar	n 0	,	4		0.44			
sodiur	2g; 250mg n)	I		2.44	Lataat available vaimabuvaamaant Liet		
Levofloxaci	n 250		10		3.34	cf modicines issued by the Greek		
Potassium chlorid	e 1700		100		4.93	Ministry of Health		
Metoclopramid	e 10		20		1.76	rinnstry of fleatth		
Furosemid	e 40		12		1.22			
Allopurino	ol 100		30		1.28			
Hydroxycarbamid	e 500		100		26.03			
Adverse Events								
Adverse Even	t Cost per episo	de (inflated to	o 2024) So	ource				
Anaemi	а	€92	Lo	upas, M.A., et al.,	, 2022 [18]			
Bacteraemi	a	€ 498	Go	Government gazzette (FEK B' 7262/21-12-2023); DRG R65B				
Decreased appetit	е	€ 55	Lo	upas, M.A., et al.,	, 2022 [18]			
Diarrhoe	а	€78	Lo	Loupas, M.A., et al., 2022 [18]				
Dyspnoe	а	€24	Da	ata on file				
Electrocardiogram QT prolonge	d	€ 946	Da	ata on file				
Fatigu	е	€ 49	Lo	upas, M.A., et al.,	, 2022 [18]			
Hypokalaemi	а	€18	Lo	upas, M.A., et al.,	, 2022 [18]			
Hyponatraemi	a	€ 289	Go	ourzoulidis, G., et	al., 2018 [19]			
Hypotensio	n	€ 56	Go	ourzoulidis G.,et a	al., 2020 [20]			
Other infections (excl. pneumonia	a)	€ 148	Da	ata on file				
Leukopeni	a	€138	Lo	Loupas, M.A., et al., 2022 [18]				
Neutropeni	a	€117	Da	Data on file				
Neutrophil count decrease	d	€189	Da	Data on file				
Platelet count decrease	d	€174	Go	Gourzoulidis, G., et al. 2022 [21]				
Pneumoni	a €	1,053	Da	Data on file				
Syncop	e €	1,326	Go	overnment gazzet	te (FEK B' 7262/2 ⁻	1-12-2023); DRGs F70A & F70B		
Sepsi	s €	2,490	Lo	upas, M.A., et al.,	, 2022 [18]			
Thrombocytopeni	a	€113	Da	ata on file				
Differentiation syndrom	e €	1,150	Go	overnment gazzet	te (FEK B' 7262/2 ⁻	1-12-2023); DRG R63H		

- No discount rate was applied due to the short-term nature of the analysis.
- Treatment-specific annual mortality rates were included in the analysis, highlighting the low mortality rate associated with IVO (**Table 2**).
- Local market share estimates with and without IVO were based on Servier Hellas market forecast estimates (Table 3).
- All costs were considered from EOPYY perspective and were extrapolated to 2024 values (€) (**Table 4**).
- The treatment acquisition costs were calculated based on their ex-factory prices as they were published in the latest drug price bulletin issued by the Greek ministry of health [12], after applying all legal discounts.

Results

- The introduction of IVO will increase the number of AML patients under treatment, with projections showing a rise from 14 to 37 patients between the first and fifth years of analysis.
- The overall costs associated with the use of IVO are expected to increase by €198,381 in the first year and €1,380,295 in the fifth year due to its progressive market

Table 5: Base-case budget impact analysis results

	Year 1	Year 2	Year 3	Year 4	Year 5
Total cost without ivosidenib in the market	6720 026	£002 044	£075 012	£1 011 100	£1 000 600
(Baseline scenario)	€/30,020	€893,244	€975,913	€1,011,102	€1,032,633
Total cost with ivosidenib in the market	E026 407	£1 406 204	£1 701 26E	ED 104 101	£0 110 007
(Projected scenario)	€936,407	€1,406,394	€1,/91,305	€2,124,191	€∠,41∠,9∠/
Annual incremental cost of introduction of	£100 201	£512 150	£015 152	£1 112 000	£1 200 205
ivosidenib	190,301	6313,150	to13,433	51,113,089	£1,360,295

- utilization for AML patients with mIDH1 who are ineligible for IC (**Table 5 and Figure 1**).
- Sensitivity analyses showed no major differences compared to the base case results. Under all sensitivity scenarios, the reimbursement of IVO in the AML market in Greece resulted in a limited budget impact for the payer, considering its promising clinical benefits for patients with mIDH1 who are ineligible to receive IC.

Conclusion

The inclusion of IVO for AML treatment was predicted to result in an annual average budget impact of €804,074, over a five-year time frame. This increase is rather limited, especially considering the low annual mortalities associated with IVO, which in turn lead to an increase in the total number of patients under treatment. AML: Acute Myeloid Leukemia; AZA: azacitidine; EMA: European Medicines Agency; FDA: Food and Drug Administration; IC: intensive chemotherapy; IVO: Ivosidenib; mIDH1: targeted isocitrate dehydrogenase 1 mutated.

1.Deschler, B. and M. Lubbert, Acute myeloid leukemia: epidemiology and etiology. Cancer, 2006. 107(9): p. 2099-107; 2.Cheson, B.D., et al., Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol, 2003. 21(24): p. 4642-9; 3.Cancer Research UK, Acute myeloid leukaemia (AML) statistics. 2015; 4.Macmillan Cancer Support and National Cancer Registration and Analysis Service. Cancer Prevalence UK Data Tables. 2015; 5.Döhner, H., et al., Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017. 129(4): p. 424-447; 6.Richard-Carpentier, G. and C.A.-O. DiNardo, Venetoclax for the treatment of newly diagnosed acute myeloid leukemia in patients who are ineligible for intensive chemotherapy; 7. NICE, Venetoclax with a hypomethylating agent for untreated acute myeloid leukaemia when intensive chemotherapy is unsuitable [ID1564] 2022; 8. Heuser, M., et al., Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2020. 31(6): p. 697-712; 9. NCCN, NCCN Guidelines: Acute Myeloid Leukemia. Version 1. 2022. 2021; 10. European Medicines Agency (EMA). Tibsovo (ivosidenib): EPAR – Product information; 11. Döhner, H., et al. (2023), P490: Updated survival, blood count recovery and safety results from the agile study in patients with acute myeloid leukemia treated with ivosidenib + azacitidine compared to placebo + azacitidine. HemaSphere, 7: e83152da.; 12. Greek Ministry of Health, Drug price bulletin. Latest available from: http://www.moh.gov.gr/; 13.Bullinger, L., et al., Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J Clin Oncol, 2017. 35(9): p. 934-946; 14. National Institute for Health and Care Excellence (NICE). Venetoclax with azacitidine for untreated acute myeloid leukaemia when intensive chemotherapy is unsuitable. Technology appraisal guidance: TA765. 2022; 15. Cashen, et al "Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia." Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28 4 (2010): 556-61.16. Servier, AG120-C-009 CLINICAL STUDY REPORT. 2021; 17. DiNardo, C.A.-O., et al., Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia; 18. Loupas, M.A., et al., EE165 Cost-Effectiveness Analysis of Liposomal Formulation of Daunorubicin and Cytarabine (CPX-351) for the Treatment of Adult Patients With Newly Diagnosed Therapy-Related AML or AML With Myelodysplasia-Related Changes in Greece. Value in Health, 2022. 25(12): p. S85; 19. Gourzoulidis, et al., Cost-Effectiveness Of Teriflunomide For The Treatment Of Relapsing-Remitting Multiple Sclerosis In Greece. Value in Health, 2018. 21: p. S339; 20. Gourzoulidis, G., et al., Cost-effectiveness Analysis of Lorlatinib in Patients Previously Treated with Anaplastic Lymphoma Kinase Inhibitors for Non-small Cell Lung Cancer in Greece. J Health Econ Outcomes Res, 2022. 9(1): p. 50-57; 21. Gourzoulidis, G., et al., Cost-effectiveness of trifluridine/tipiracil as a third-line treatment of metastatic gastric cancer, including adenocarcinoma of the gastrohesophageal junction, among patients previously treated in Greece. Expert Rev Pharmacoecon Outcomes Res, 2022. 22(2): p. 259-269. Acknowledgments: Authors would like to thank Servier Hellas that sponsored this study.

