

The Comparison of Outcomes Between Metabolic Bariatric Surgery and Glucagon-Like Peptide 1 Receptor Agonists (GLP-1 RAs) After Three Years

Xiaoxia Wang, Pharm.D.^{a,b}, Linda Chen, Pharm.D.^a, MS, Tim Reynolds, Pharm.D.^a, MS, Paul Godley, Pharm.D., FASHP^a Baylor Scott & White Health^a, University of Texas at Austin College of Pharmacy^b

BACKGROUND

Obesity significantly increases the risk of illness and mortality, and it has been associated with a greater risk of developing metabolic syndromes.^{1,2} Previous studies have demonstrated that bariatric surgery provides a high degree of weight loss as well as diabetes remission and cardiovascular benefits³. Recently, glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have been approved by the FDA for weight loss, and a growing body of evidence has demonstrated that GLP-1 RAs alleviate obesity-related comorbidities, including diabetes and fatty liver diseases, and prevent weight regain among patients with obesity.^{4,5}

There is no current evidence directly comparing GLP-1 RAs with bariatric surgery on obesity-related labs, medication burdens, and healthcare utilization.

OBJECTIVE

To compare the changes of weight, obesity-related comorbidity lab values, vitals, and healthcare utilization between metabolic bariatric surgery (MBS) and glucagon-like peptide-1receptor agonists (GLP-1 RA) three years after initiation.

METHODS

Retrospective, longitudinal, observational, single-site study design

Data sources: electronic health record accessed via the Epic Caboodle data warehouse from Baylor Scott & White Health Study period: Jan 1, 2016 to Dec 31, 2023

Primary outcome: compare the change in average body mass index (BMI) before and after either bariatric surgery or GLP-1 RAs

Secondary outcome: compare the change in lab measurements and healthcare utilization before and after either bariatric surgery or GLP-1 RAs

Descriptive statistics were expressed in aggregates and percentages to demonstrate the trends in BMI changes, lab measurements and healthcare utilization.

Multiple linear regression was used for lab values and healthcare utilization to identify the significant factors that impact these outcomes. An alpha value 0.05 was used.

Patients were included in this study:

- Age \geq 18 years; BMI \geq 30 kg/m² (if received GLP-1 RAs)
- Initiated GLP-1 RAs or received bariatric surgery between Jan 1, 2017, and Dec 31, 2020
- Received regular care (≥ 1 office visits per year) at the organization during the study period
- Did not receive both treatments during the study period

Table 1. Patients' Demographic

Table 2. Patients' Baseline Characteristics

	MBS (n=2481)	GLP-1 (n=2198)	P Value		MBS (n=2481)	GLP-1 (n=2198)	P Value		MBS (n=2481)	GLP-1 (n=2198)	P Value
Age, mean (SD)	48 (13)	55 (12)	P<0.001	Primary insurance	type, n (%)		P=0.241	Category 1 (30≤BMI<35)	111 (4.5%)	797 (36.3%)	
$\Gamma_{\text{omplown}}(0/)$	2 070 (02 40/)	1 227 (55 80/)	D<0.001	Commercial	1,538 (62.0%)	1,501 (68.3%)		Category 2 (35≤BMI<40)	522 (21.0%)	638 (29.0%)	
remale, n (%)	2,070 (85.4%)	1,227 (55.8%)	P<0.001	Medicare	692 (27.9%)	517 (23.5%)		Category 3 (BMI≥40)	1,787 (72.0%)	714 (32.5%)	
Race, n (%)			P=0.946	Medicaid	157 (6.3%)	65 (3.0%)		Charlson Comorbidity Ind	ex, (CCI), n (%)		P<0.001
White	1 790 (72 2%)	1 597 (72 7%)		Other	66 (2.7%)	145 (6.6%)		CCI=0	882 (35.6%)	108 (4.9%)	
vvince	vvinte 1,790(72.2%) 1,597(Annual median household income by zip code, n (%)			P<0.001	Mild (CCI=1 or 2)	859 (34.6%)	1016 (46.2%)	
Black	546 (21.8%)	428 (19.5%)		≤ \$49,999	353 (14.2%)	226 (10.3%)		Moderate (CCI=3 or 4)	356 (14.3%)	897 (40.8%)	
Asian	16 (0.6%)	44 (2.0%)		\$50,000-\$74,999	957 (38.6%)	807 (36.7%)		Severe (CCI>5)	289 (11.6%)	407 (18.5%)	
	10 (0.070) 11 (2.070)			\$75,000-\$99,999	656 (26.4%)	526 (23.9%)		HbA1c, n (%)		P<0.001	
Other	134 (5.4%)	129 (5.8%)		≥ \$100,000	251 (10.1%)	497 (22.6%)		Normal (HbA1c<5.7%)	459 (18.5%)	61 (2.8%)	
Ethnicity, n (%)			P=0.006	Missing	30 (1.2%)	28 (1.3%)		Prediabetic (5.7% - 6.4%)	389 (15.7%)	162 (7.4%)	
			Obesity category,	n (%)		P=0.025	Diabetic (≥6.5%)	498 (20.1%)	1840 (83.7%)		
Hispanic/Latino	401 (16.2%)	508 (23.1%)		BMI<30	61 (2.5%)	79 (3.6%)		Missing	1171 (47.2%)	135 (6.1%)	

Figure 1. Changes in Obesity-Related Labs from Baseline to Year 3 between Bariatric Surgery and GLP-1 RAs

	Chang	e in BMI	Change in Systolic Blood Pressu				
	MBS	GLP-RAs	MBS	GLP-RA			
Coefficient 95% CI	0 [Reference]	5.66 [5.28, 6.04]	0 [Reference]	0.20 [-0.01, 0.4			
Intercept	-4	.11	-0.26				
P Value	P<(0.001	P=0.0711				
Significant factors	Age, ethnicity, rac	ce, baseline BMI	Age, baseline SBP and DBP				

Table 3. Changes of Healthcare Utilization from Baseline to Year 3 between Bariatric Surgery and GLP-1 RAs

	Number	r of ED Visits _I	oer 100	00 Patient-Years	Number of Inpatient visit per 1000 Patient-Years			Inpatient Length of Stay per 1000 Patient-Years			Number of Outpatient Visits per 1000 Patient-Years		
	Bas	eline	Year 3	β Δ	Baseline	Year 3	Δ	Baseline	Year	3 Δ	Baseline	Year 3	Δ
BMS	33	.05	30.63	-2.42	126.16	214.83	88.67	404.68	1005.2	24 600.56	19,018	7,406	-11,612
GLP-RAs	15	.01	16.83	1.82	69.61	90.54	20.93	258.87	346.2	2 87.35	9,660	4,703	-4,957
		Change of Total Number of ED Visits		Change of Total Number of Inpatient Admission		Change of Total Number of Inpatient Length of Stay			Change of Total Number of Outpatient Visits				
		MBS		GLP-RAs	MBS		GLP-RAs	MBS		GLP-RAs	MBS		GLP-RAs
Coefficient 95% CI		0 [Referen	[Reference] 0.02 [-0.01, 0.03]		0 [Refere	0 [Reference] -0.18 [-0.27, -0.04]		0 [Reference] -C		-0.87 [-1.02, -0.31]	0 [Reference]		6.58 [5.87 <i>,</i> 8.31]
Intercept		0.01		0.04		0.20			-11.02				
P Val	P Value		P=0.0562		P<0.001		P<0.001				P<0.001		
Significant factors		Age, insurance type		Age, race, insur	ge, race, insurance type, CCI		Age, race, insurance type			Age, gender,	Age, gender, CCI, insurance type		

STUDY CRITERIA

RESULTS

LIMITATIONS

- Notable proportion of missing laboratory values including HbA1c (47.2% in MBS patients) and LDL (36.1% in MBS patients)
- Not able to capture care if the patients' visits were outside of Baylor Scott and White Health, so healthcare utilization may be underestimated.

DISCUSSION

- Patients who got bariatric surgery have significantly higher BMI.
- Bariatric surgery reduces BMI within the first year but increases in the next two years after surgery.
- GLP-1 RAs gradually reduce BMI over three years.
- Compared to bariatric surgery, GLP-1 RAs might be a better choice for non-severe obese patients with diabetes or hyperlipidemic issues.
- Patients undergoing bariatric surgery are less likely to have outpatient visits, while patients receiving GLP-1 RAs are less likely to have inpatient admissions.
- Further studies are needed to analyze patients on both bariatric surgery and GLP-1 RAs.

CONCLUSION

• In a real-world setting, there is no clear winner between bariatric surgery and GLP-1 RAs.

REFERENCES

•	 (2020). The relationship between obesity and other medical comorbidities. Obesity Medicine, 17, 100164. Zhang, X., Ha, S., Lau, H. C. H., & Yu, J. (2023, March). Excess body weight: Novel insights into its roles in obesity comorbidities. In Seminars in Cancer Biology. Academic Press. Arterburn, David E., and Anita P. Courcoulas. "Bariatric surgery for obesity and metabolic conditions in adults." Bmj 349 (2014). Hope, D. C., Vincent, M. L., & Tan, T. M. (2021). Striking the balance: GLP-1/glucagon co-agonism as a treatment strategy for obesity. Frontiers in endocrinology, 12, 735019. Liu, C., Zou, Y., & Qian, H. (2020). GLP-1R agonists for the treatment of obesity: a patent review (2015-present). Expert Opinion on Therapeutic Patents, 30(10), 781-794. 						
	DISCLOSURES						

All authors are research investigators of studies sponsored by Pfizer and Sanofi but not in connection with this study.

Questions? Contact <u>Xiaoxia.Wang1@BSWHealth.org</u>