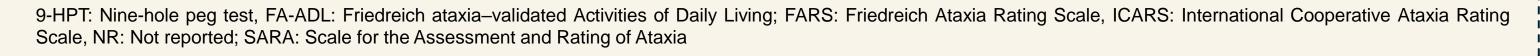
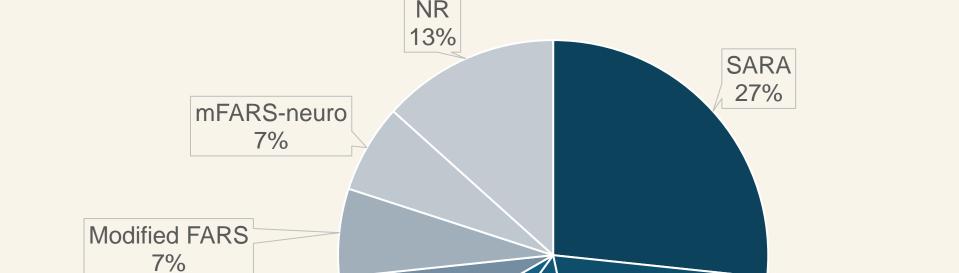
A Systematic Literature Review on the Efficacy of Pharmacological Interventions in Ataxia


Gunjan Bisht¹, Gagandeep Kaur¹, Sumeet Attri¹, Pankaj Rai¹, Barinder Singh² ¹Pharmacoevidence, Mohali, India, ²Pharmacoevidence, London, UK

CONCLUSION

Omaveloxolone and riluzole have demonstrated potential in reducing ataxia symptoms, with evidence suggesting their efficacy. While other interventions have shown some symptom reduction, the findings have not reached statistical significance, underscoring the need for further research to comprehensively assess their effectiveness and potential benefits

INTRODUCTION


- Ataxia is a condition characterized by a lack of coordination in voluntary movements, often linked to dysfunction of the cerebellum or sensory inputs like vestibular or proprioceptive pathways
- It is typically a symptom of underlying disorders, including infectious or immunologic causes, which may have limited treatment windows¹
- While current therapies mainly focus on symptom management, there is a significant gap in treatments that address the underlying causes of ataxia
- This systematic literature review (SLR) aims to evaluate the efficacy of pharmacological interventions in ataxia

9-HPT

20%

 Four studies assessed the efficacy of rovatirelin, riluzole, and troriluzole using the SARA scale. At 12 months, a statistically significant improvement was observed with riluzole compared to placebo among patient with hereditary cerebellar ataxia (50% vs. 11%)

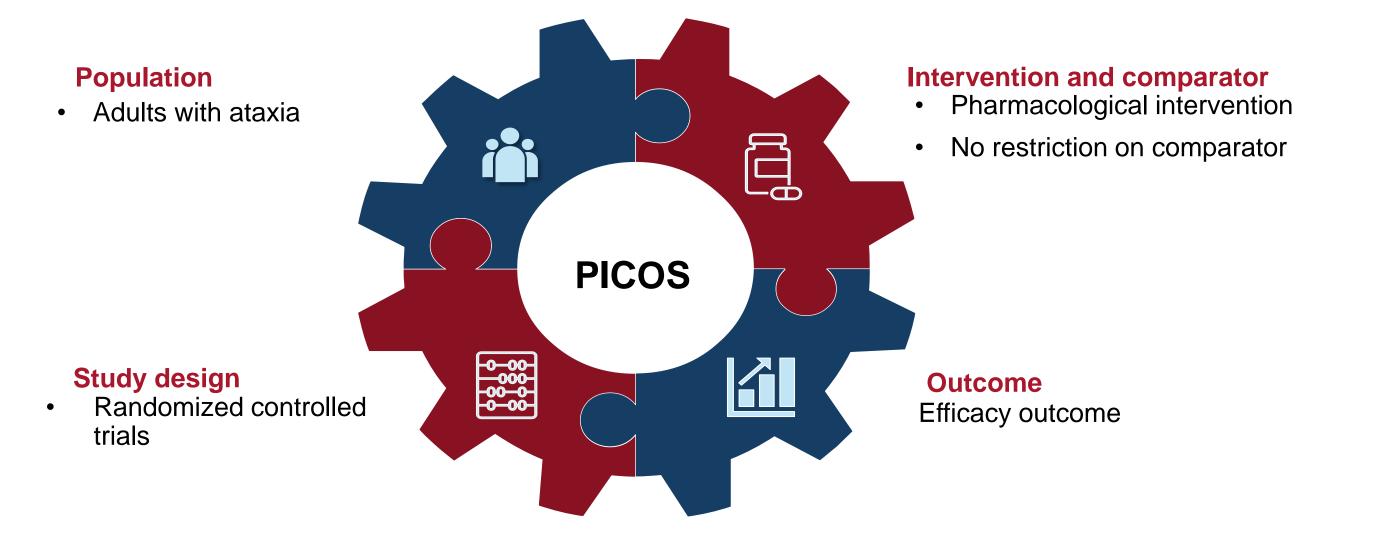
FA-ADL 13%

FVIDPharmaco[®]

Figure 4: Efficacy assessment scales used across the included studies

FARS

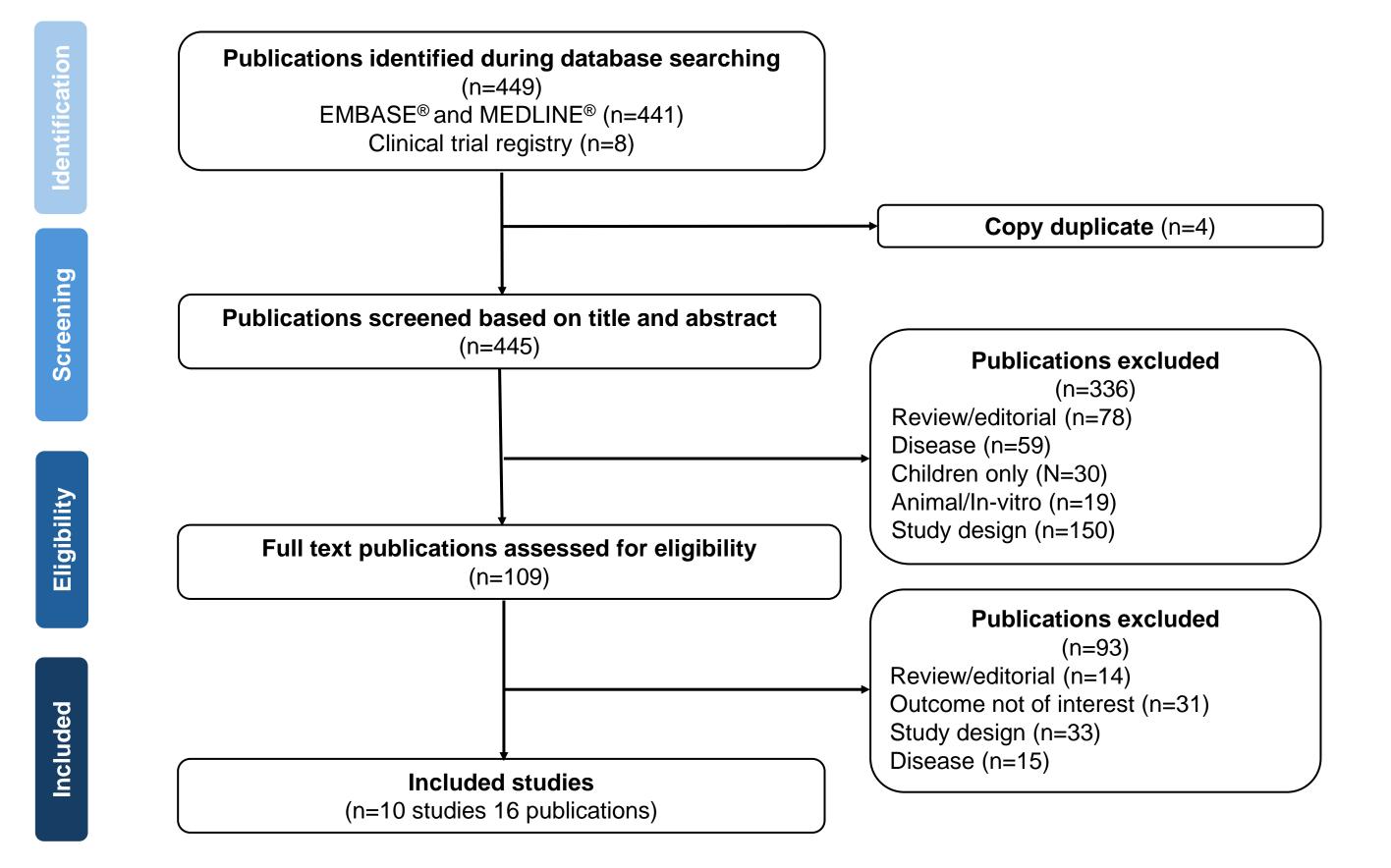
7%


ICARS

6%

METHODS

- A systematic search was performed across key biomedical databases (EMBASE[®] and MEDLINE[®]) and trial registries from inception to May 2024 in accordance with Preferred reporting items for systematic reviews and meta-Analyses (PRISMA) guidelines, Cochrane Handbook and National Institute for Health and Care Excellence standard approach for conducting reviews. The prespecified eligibility criteria is presented in Figure 1
- Two independent reviewers reviewed each study, and a third reviewer resolved disagreements


Figure 1: Eligibility criteria for the systematic literature review

RESULTS

Among the 449 publications identified, 10 studies evaluated the efficacy of pharmacological interventions in ataxia. A PRISMA diagram for selection of evidence is presented in Figure 2

Figure 2: Flow of studies through the systematic literature review

 Among remaining three studies with efficacy data using SARA scale, no significant differences were observed with rovatirelin, riluzole, and troriluzole versus placebo (Table 1)

 Table 1: Summary of change in SARA scale scores across treatments in included studies

Study name	Treatment	Dose	Time point	CFB	p value
	Rovatirelin	1.6 mg	24 weeks	-0.90	0.490
	Rovatirelin	2.4 mg	24 weeks	-1.23	0.058
	Placebo	-	24 weeks	-1.25	
	Rovatirelin	1.6 mg	End-point	-0.75	0.176
Nishizawa 2020	Rovatirelin	2.4 mg	End-point	-1.22	0.814
INISHIZAWA ZUZU	Placebo		End-point	-1.15	
	Rovatirelin	2.4 mg	24 weeks	-1.46	0.303
	Placebo		24 weeks	-1.13	-
	Rovatirelin	2.4 mg	End-point	-1.45	0.194
	Placebo		End-point	-1.05	
Coarelli 2022	Riluzole	50 mg	1 year*	0.5	0.70
	Placebo	-	1 year*	0.3	
NCT02960893	Troriluzole	140 mg	8 weeks	-0.81	
102300033	Placebo		8 weeks	-1.06	

Mean value was reported; * Data reported for Median; CFB: Change from baseline

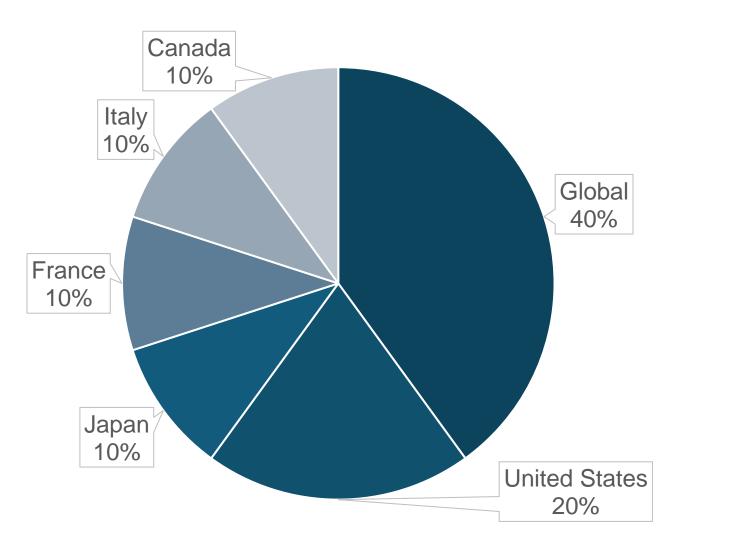

- Three studies assessed omaveloxolone, deferiprone, and luvadaxistat using the 9-HPT scale. At 48 weeks, omaveloxolone showed significant improvements in symptoms of friedreich's ataxia, with better mean change from baseline in 9-HPT scores (-0.0014 vs. -0.0001) (Table 2)
- On the other hand, the remaining two studies with efficacy data using 9-HPT scale showed no significant improvements with deferiprone and luvadaxistat compared to placebo (Table 2)

Table 2: Summary of mean change from baseline in 9-HPT scale scores for treatments across included studies

Study name	Treatment	Dose	Time point	CFB	p value
	Deferiprone	20 mg/kg/d	6 months	0.0007	0.463
Pandolfo 2014	Deferiprone	40 mg/kg/d	6 months	0.0005	0.453
	Placebo		6 months	-0.0008	
	Luvadaxistat	75 mg	12 weeks	-0.00031	NS
Wang 2021	Luvadaxistat	300 mg	12 weeks	-0.00059	NS
	Placebo		12 weeks	0.00029	
Lynch 2023	Omaveloxolone	150 mg	48 weeks	-0.0014	0.04
	Placebo		48 weeks	-0.0001	0.82

 The studies varied geographically, with the majority conducted globally (n=4), followed by the United States (n=2), and one each in Japan, France, Italy, and Canada (Figure 3)

Figure 3: Geographic distribution across the included studies

CFB: Change from baseline

- Two studies used FA-ADL scale to assess efficacy of omaveloxolone and luvadaxistat versus placebo; at 48 weeks, omaveloxolone showed significant improvements in symptoms of friedreich's ataxia using FA-ADL scale (-0.17 vs. 1.14) while no statistically significant difference in FA-ADL scores were observed between luvadaxistat and placebo (Table 3)
- Omaveloxolone also showed improvements in mFARS scores (47% vs. 27%) compared to placebo

Table 3: Summary of mean change from baseline in FA-ADL scores for different treatments in included studies

Study name	Treatment	Dose	Time point	CFB	p value	
Lynch 2023	Omaveloxolone	150 mg	48 weeks	-0.17	0.042	
	Placebo		48 weeks	1.14		
Wang 2021	Luvadaxistat	75 mg	12 weeks	-0.29	NS	
	Luvadaxistat	300 mg	12 weeks	-0.52	NS	
	Placebo		12 weeks	-0.40	NS	

CFB: Change from baseline

 Two studies evaluated idebenone and luvadaxistat showed only minimal improvements in ICARS, FARS, and mFARS-neuro compared to placebo (Table 4)

Table 4: Summary of mean change from baseline in different scale score across treatments in included studies

 The most used scales for efficacy assessment were the Scale for the Assessment and Rating of Ataxia (SARA, n=4), followed by the Nine-Hole Peg Test (9-HPT, n=3) and the Friedreich Ataxia-Validated Activities of Daily Living (FA-ADL, n=2). Other scales included the International Cooperative Ataxia Rating Scale (ICARS), Friedreich Ataxia Rating Scale (FARS), modified (m) FARS, and mFARS-neuro (n=1 each) (Figure 4)

Study name	Treatment	Dose	Time point	Scale	Score
	Idebenone	180-360 mg/d	52 weeks	ICARS	1.6
	Idebenone	450-900 mg/d	52 weeks	ICARS	1.7
	Idebenone	1350-2250 mg/d	52 weeks	ICARS	1.2
NCT00905268	Placebo		52 weeks	ICARS	1.1
NC 100905206	Idebenone	180-360 mg/d	52 weeks	FARS	0.9
	Idebenone	450-900 mg/d	52 weeks	FARS	1.2
	Idebenone	1350-2250 mg/d	52 weeks	FARS	1.4
	Placebo		52 weeks	FARS	0.9
Wang 2021	Luvadaxistat	75 mg	12 weeks	mFARS-neuro	-1
	Luvadaxistat	300 mg	12 weeks	mFARS-neuro	-1.43
	Placebo		12 weeks	mFARS-neuro	-2.95

FARS: Friedreich Ataxia Rating Scale, ICARS: International Cooperative Ataxia Rating Scale, m-FARS: Modified FARS, SARA: Scale for the Assessment and Rating of Ataxia

 Treatment with amantadine hydrochloride found no improvement in lower limb function, but reported a 20% improvement in upper limb ataxia (p < 0.05)

References	Disclosures
1. Ashizawa. T, et al. 2016. Ataxia. Continuum: Lifelong Learning in Neurology, 22(4), pp.1208-1226 7. Coarelli. G, at al. 2022. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double-blind, placebo-controlled trial. The	
2. https://clinicaltrials.gov/study/NCT01303406?cond=ataxia&intr=Idebenone%20&rank=8&tab=results#outcome-measures Lancet Neurology, 21(3), pp.225-233	
3. https://clinicaltrials.gov/study/NCT00905268?cond=ataxia&intr=Idebenone%20&rank=7&tab=results#adverse-events 8. Romano. S, et al. 2015. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 14(10), pp.985-991	GB, BS, PR, SA, and GK, the authors, declare that they have no
4. Wang. H, et al. 2021. Results of a randomized double-blind study evaluating luvadaxistat in adults with Friedreich ataxia. Annals of Clinical and Translational Neurology, 8(6),9. Botez. M.I, et al. 1996. Amantadine hydrochloride treatment in heredodegenerative ataxias: a double blind study. Journal of Neurology, Neurosurgery & Psychiatry, 61(3),	· · · · ·
pp.1343-1352	conflict of interest
5. Pandolfo. M, et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol. 2014 Oct;76(4):509-21. doi: 10.1002/ana.24248. Epub 2014 Aug 30. PMID:10. https://clinicaltrials.gov/study/NCT02960893?cond=ataxia&intr=troriluzole&rank=2&tab=results#outcome-measures	
11. Lynch. DR, et al. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe Study). Ann Neurol. 2021 Feb;89(2):212-225. doi: 10.1002/ana.25934. Epub 2020 Nov 5.	
6. Nishizawa. M, t al. 2020. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. Journal of Neurology, Erratum in: Ann Neurol. 2023 Dec;94(6):1190. doi: 10.1002/ana.26808. PMID: 33068037; PMCID: PMC7894504.	
Neurosurgery & Psychiatry, 91(3), pp.254-262	

