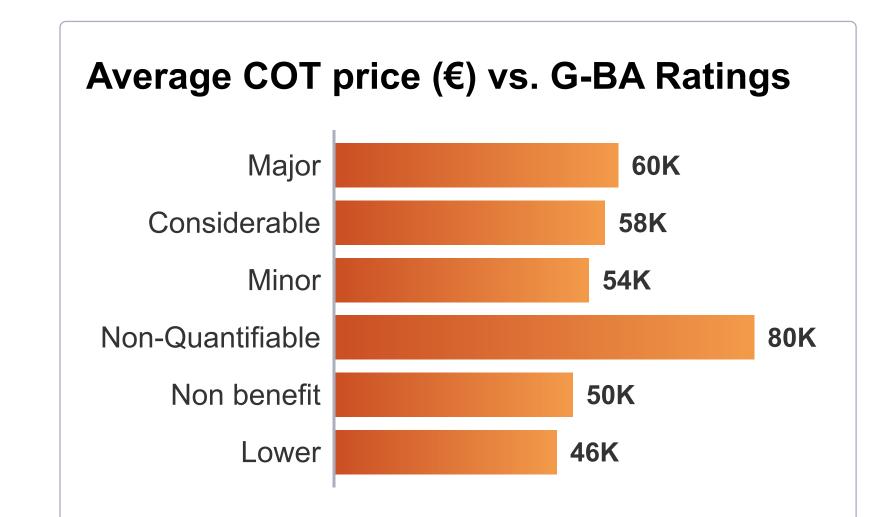
Predicting Post-AMNOG Price for a New Product Launch in Germany

Pranab Jha¹, Shivani Shah², Alyssa Ma³

¹EVERSANA, Pune, MH, India, ²EVERSANA, Mumbai, MH, India, ³EVERSANA, Chicago, IL, USA

HTA20


BACKGROUND AND OBJECTIVE

- In Germany, all new innovative medicines are subject to an early benefit assessment by the German Federal Joint Committee (G-BA) with subsequent price negotiation and optional arbitration.
- This study aims to explore the various data-based modeling techniques to predict post-AMNOG (Arzneimittelmarkt-Neuordnungsgeset) annual cost of treatment (COT) for oncology products.

METHODS

- Data Source: NAVLIN Data EVERSANA's
 Global Pricing & Market Access database
- Products launched between 2018 and 2023
 that completed the AMNOG process were
 selected, resulting in 40 products. These
 products encompassed 71 indications, and
 the ratings for sub-populations yielded 321
 data points.

TRAINING AND TESTING

- One-Way Analysis of Variance (ANOVA):
 G-BA Ratings & Annual COT
- Input features 'GBA Rating' and 'Mean
 Annual COT for each indication' were
 scaled by z-score, while log scale was
 applied to the output feature (Annual COT).
- Models trained on 2018-2020 data, then tested on 2021 product launches.

3 ALGORITHMS

Four Regression methods

Decision Tree

k-Nearest Neighbors (k-NN)

4 STATISTICS

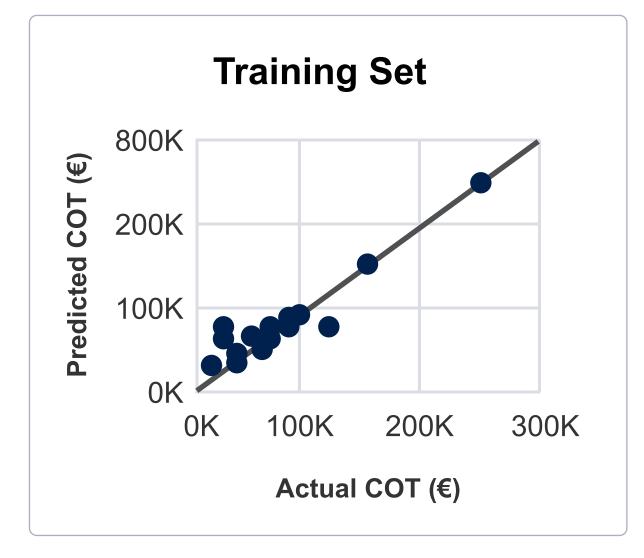
Assessing accuracy and reliability of models

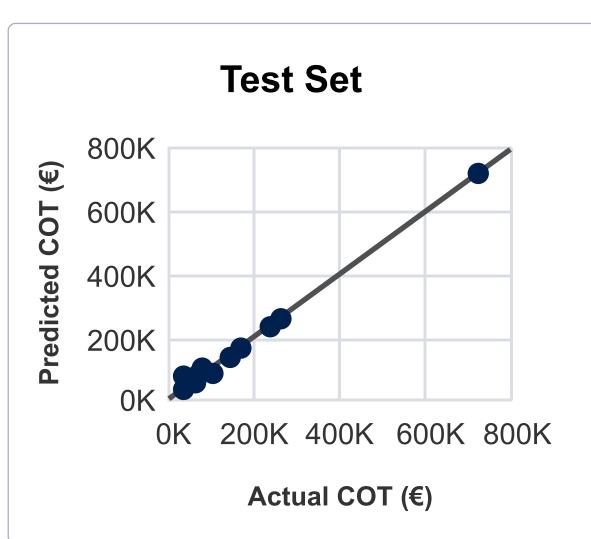
Adjusted R-squared (R-sq)

Root Mean Squared Error (RMSE)

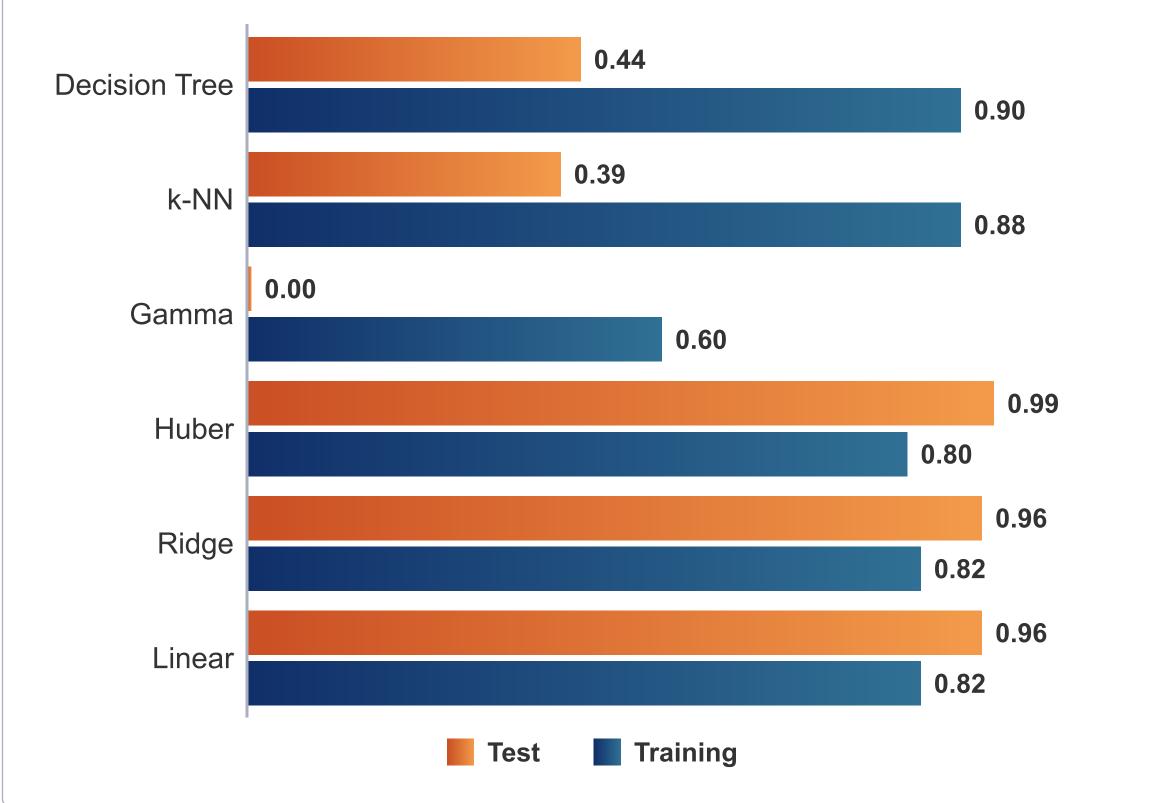
Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE)

RESULTS


ANOVA test established a relationship between G-BA ratings and post-AMNOG COT


F-value 2.2107 P-value 0.0419

Model Metrics - quantifying the quality of predictions for Training and Test datasets


Algorithms	Trai MAE	ining Dataset RSME	MAPE	MAE	Test Dataset RSME	MAPE
Linear Regression	10,632.50	13,674.72	37%	11,424.65	13,340.46	24%
Ridge Regression	10,630.97	13,675.43	37%	11,311.95	13,163.16	24%
Huber Regression	8,777.63	14,736.55	39%	5,086.66	7,829.80	9%
Gamma Regression (GLM)	17,542.98	20,647.73	56%	55,280.15	416,283.28	39%
k-Nearest Neighbors (k-NN)	5,999.43	11,163.41	16%	22,268.93	53,917.86	34%
Decision Tree Regression	4,635.83	10,269.71	11%	19,893.52	51,969.11	28%

Huber Regression Predictions

R2 Values: Test vs. Training Data for Various Algorithms

-`ģ- Key Takeaways

- On training dataset, **Decision Tree model** provided the best adjusted R-sq (0.901) and lowest MAPE (10.6%) scores.
- On test-data (2021-2022), the **Huber regression** model performed the best with adjusted R-sq of 0.987 and MAPE of 8.9%.
- The gamma model had the lowest performance, on both test and training dataset.

CONCLUSION

- ANOVA test results confirmed the relationship between G-BA ratings and Post-AMNOG prices, which serves as the basis for the prediction.
- The Huber Regression model displayed best performance in predicting post-AMNOG price for products launched in 2021-22.
- This flexible yet rigorous
 framework can be modified to
 include more independent
 variables, understand their effect
 on launch prices and evaluate
 algorithms for predictive modeling
 of COT.
- Decision Tree Model gives a good fit on training data but performs poorly on test data. This is a case of overfitting or high-variance in the constructed model.

DISCUSSION

Flexible Framework & Generalizability

 Our flexible framework has ability to incorporate additional variables

Economic Factors

Policy changes

Applications

Strategic Pricing Market Access Planning

Healthcare Policy Impact

Competitive Advantage

Future Research

Exploring Additional Variables

Extending Price Prediction to Other Countries

0

Refining Modelling Techniques

REFERENCES

- 1. NAVLIN Data (HTA Database): (https://data.navlin.com)
- G-BA: Benefit Assessment of Medicines, Available at: https:// www.g-ba.de/bewertungsverfahren/ nutzenbewertung/

