

Pharmacoepidemiology and Clinical Pharmacology

© The HTx Consortium 2019-2023. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 825162.

Exploring Diabetes Subgrouping: Pharmacoeconomic Added Value and the Best Strategy

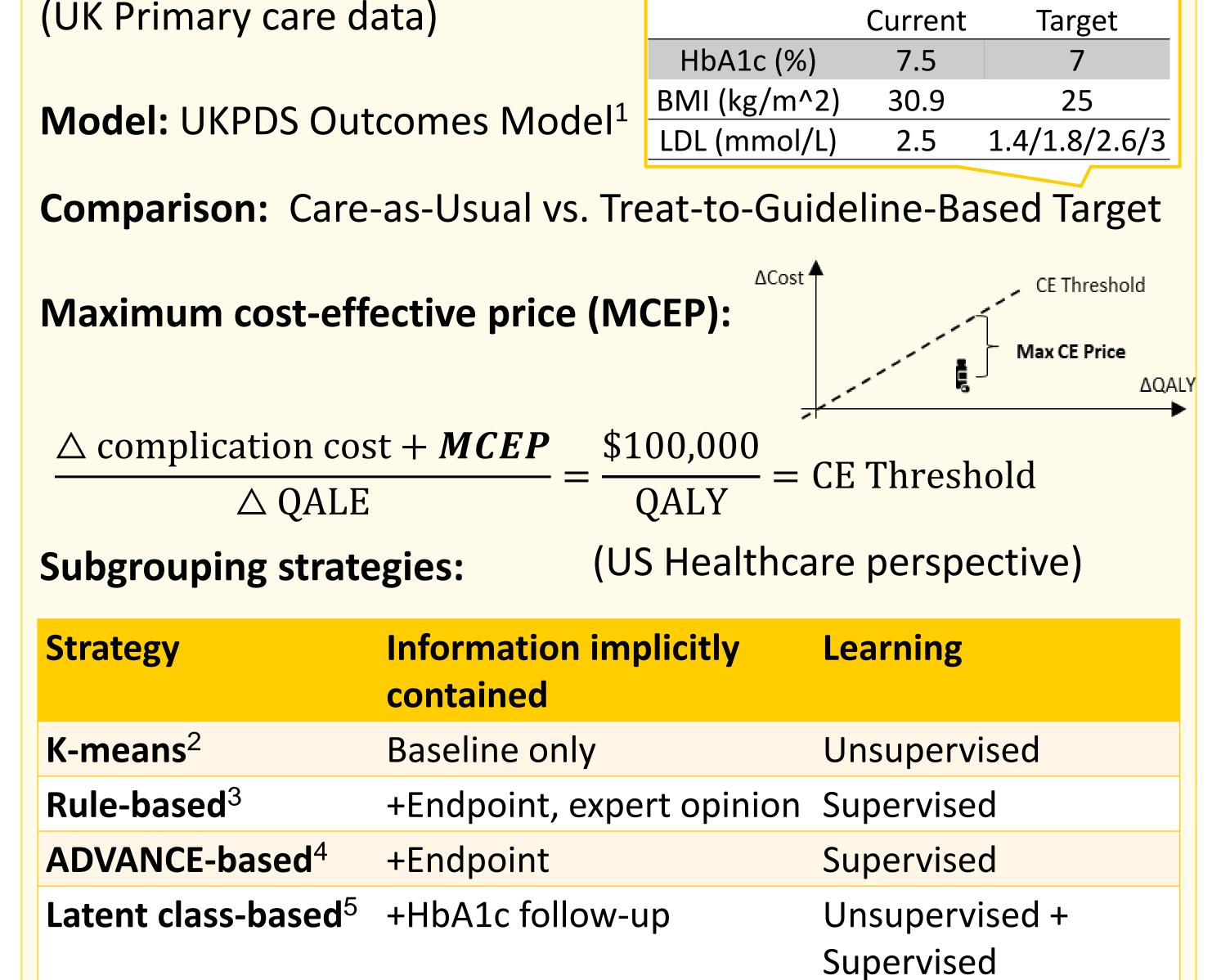
Xinyu Li^{1,2}, Junfeng Wang¹, James Altunkaya³, Francisco Javier Somolinos-Simón⁴, Anoukh van Giessen⁵, Li Jiu¹, Junwen Zhou³, Jose

Tapia-Galisteo^{4,6}, Gema García-Sáez^{4,6}, M. Elena Hernando^{4,6}, Jose Leal³, Wim Goettsch¹, Talitha L. Feenstra^{2,5}

1 Utrecht University 2 University of Groningen 3 University of Oxford 4 Universidad Politécnica de Madrid 5 Netherlands National Institute for Public Health and the Environment 6 CIBER-BBN

Introduction

Type 2 diabetes (T2D) is highly heterogeneous in its phenotypes. Although data-driven subgroups are gaining attention, the added value and optimal subgrouping strategy remain understudied.


Research questions

From a pharmacoeconomic perspective (for aiding reimbursement decision-making in clinical practice) 1. How much does it help having diabetes subgroups? 2. What might be the optimal subgrouping strategy?

Methods

Data: 2,000 randomly selected newly diagnosed T2D from CPRD

Results K-means ²	Mappings between different subgrouping strategie (with K-means subgroups tracked)			
N-IIICalls	SIDD	IROD	MARD	
Rule-based ³ HbA1c & SCORE				
Guideline cutoffs	Low	Mi	ddle High	
ADVANCE-based Prediction model ⁴				
Risk are divided	Low	Middle	High	
into tertiles				
Latent class-based HbA1c trajectory ⁵ +		Stable	Improvi	

Prediction model

Fluctuating

10 Years hypothetical intensive treatment (HbA1c+LDL+BMI)

Subgroup	Count (Proportion)	Annual Cost-E	ffective Price (\$CEP)	*CEP (Diff to min)		
HTx K-Means						
MARD	854 (42.7%)	-		624 (Ref)		
SIDD	371 (18.55%)	-		876 (252)		
IROD	775 (38.75%)			1227 (603)		
Rule-based			 			
Low HbA1c and risk	634 (31.7%)		1 1	596 (Ref)		
Middle HbA1c and risk	1123 (56.15%)			941 (346)		
High HbA1c and risk	243 (12.15%)			1540 (945)		
ADVANCE Model-based			 			
Low risk	667 (33.35%)	-	 	632 (Ref)		
Middle risk	666 (33.3%)		I I■ I	932 (300)		
High risk	667 (33.35%)		 ■ 	1150 (518)		
HbA1c Latent Class-based						
Fluctuating	22 (1.1%)	-	 	853 (Ref)		
Stable	1789 (89.45%)	-	 	879 (26)		
Improving	189 (9.45%)		 ■ 	1152 (299)		
Homogeneous T2D (when no subgrouping str	rategy is applied)	500 Lower CEP	1000 1500 Higher CEP			

*The CEP referred to here is the annualized MCEP, a straightforward indicator.

Discussion & Conclusions

- **Mappings** between different subgrouping strategies vary \rightarrow necessity and importance of carefully evaluating subgrouping strategies
- Subgroup-specific CEP differs substantially from CEP of homogenous T2D → Subgroups support priority setting and resource allocation
- Rule-based risk-driven subgroups captured greatest discrimination in CEP → appear optimal from a pharmacoeconomic perspective
- The lesser discrimination of data-driven latent class-based subgroups might be attributed to their current inability to exclude treatment • effects, thereby mixing mild individuals with severe individuals who have good control.

References

- Hayes, Alison J., et al. "UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82." Diabetologia 56 (2013): 1925-1933.
- Ahlqvist, Emma, et al. "Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables." The lancet Diabetes & endocrinology 6.5 (2018): 361-369.
- Li, Xinyu, et al. "Potential Value of Identifying Type 2 Diabetes Subgroups for Guiding Intensive Treatment: A Comparison of Novel Data-Driven Clustering With Risk-Driven Subgroups." Diabetes Care 46.7 (2023): 1395-1403.
- Kengne, Andre Pascal, et al. "Contemporary model for cardiovascular risk prediction in people with type 2 diabetes." European Journal of Cardiovascular Prevention & Rehabilitation 18.3 (2011): 393-398.
- Lavikainen, Piia, et al. "Data-Driven Identification of Long-Term Glycemia Clusters and Their Individualized Predictors in Finnish Patients with Type 2 Diabetes." Clinical Epidemiology (2023): 13-29.