Economic Evaluation of Single Pill Combination Clopidogrel Aspirin versus Free Combination Clopidogrel plus Aspirin for Prevention of Cardiovascular Events after Acute Coronary Syndrome in China

Wu Y¹, Wei QR¹, Zhou JT¹, Guan X^{1,2}, Wang LY^{1,2}, Tan J³, Wang LJ³, Nicholls C⁴, Abdul Jabbar OA⁵, Li HC^{1,2}

¹ School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China

² Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China

³ Sanofi, Shanghai, China
⁵ Sanofi, Milan, Italy

⁴ Sanofi, Reading, UK

INTRODUCTION

- The annual incidence of a cute coronary syndrome (ACS) is estimated around 3 million in China.
- Clopidogrel aspirin (SPC) was launched in China in 2022 and successfully listed in reimbursement list as the only SPC of the dual antiplatelet therapy (DAPT).

METHODS

- ◆ **Perspective**: Chinese public healthcare system
- Target population: Patients after ACS treated with DAPT for 1 year as aligned with the indication.
- ◆ Model structure: A two-part cost-effectiveness model was developed to assess the cost-effectiveness of SPC versus free combo. A short time (1 year) decision tree model was developed to project the short-term outcomes of the two treatments due to difference in the DAPT adherence rate (adherence (PDC≥80%) and non-adherence (PDC < 80%), PDC: the proportion of days covered). A Markov model was developed to project the long-term outcomes (lifetime) that included 6 states: event free, post nonfatal (post NF), MI (0-1year), stable post-MI, post NF-IS (0-1 year), stable post-IS, death. The cycle length is one year. (Figure 1 & Figure 2)</p>

Model inputs

• In free combo arm, the adherence rate (20.93%), duration of treatment and event rates in adherence /non-adherence group for the first year

Both the event rates in short-term and transition probabilities in long-term were the same for two treatments , the key driver was the improvement in adherence rate.

OBJECTIVES

• To evaluate the lifetime cost-effectiveness of SPC versus free combination

of clopidogrel plus aspirin for the prevention of cardiovascular events in

ACS patients from the perspective of Chinese healthcare system.

- Utilities were obtained from literature^[2,3] (Table 4).
- The discount rate was 5% for both costs and health outcomes.
- ♦ Sensitivity analyses
- One-way sensitivity analysis was conducted to test the uncertainty: clinical inputs were using 95% confidence interval, costs and health outcomes were using 0% to 8% as recommended by local guideline.
- Probabilistic sensitivity analysis (PSA) was also adopted to verify the robustness.

Table 1 Clinical Inputs of Decision Tree Model

Table 4 Utilities

	Non- adherence	Adherence	Event	Value	
Proportion in free	79.07%	20.93%	Stable ^[2]	0.82	

Internal

respectively (Table 1) as well as transition probabilities of Markov model for the following years (Table 2) and costs (Table 3) were all obtained from a real-world study based on a local claim database ^[1].

• The mean adherence difference (11%) for SPC and free combo in chronic disease^[4] was applied to obtain the adherence in Coplavix arm (31.93%).

Figure 2 Markov Model

RESULTS

0

BASE CASE RESULTS

Compared with free combo, treating patients with SPC resulted in a gained
 0.022 QALYs and was associated with cost savings of 580.78 RMB per

Proportion in SPC arm ^[4]	68.07%	31.93%	MI ^[2]	0.67
Duration of treatment (days) ^[1]	320	130	Post-NF MI ^[2]	0.82
Probability of MI ^[1]	1.11%	0.64%		0.00
Probability of IS ^[1]	2.96%	2.10%	IS ^[2]	0.33
Probability of Revascularization ^[1]	6.79%	4.11%	Post-NF IS ^[2]	0.52
CV death ^[1]	2.36%	1.13%		0.00
Other death ^[1]	0.54%	0.54%	Revascularization	0.88

*Drug price were obtained from local published online data

Table 2 Transition Probabilities of Markov Model

		To State					
	Patient	MI (0- 1y)	Stable post- NF MI	IS (0-1y)	Stable post-NF IS	Event Free	CV Death
	Post NF-MI (0-1y)	9.47%	Remainder	2.81%	-	-	25.26%
ate	Stable Post NF-MI (> 1y)	5.46%	Remainder	0.56%	-	-	6.19%
St	Post NF-IS (0-1y)	0.00%	-	8.85%	Remainder	-	11.10%
From	Stable Post NF-IS (> 1y)	0.00%	-	2.73%	Remainder	-	6.19%
_	Event Free	1.86%	-	1.50%	-	Remainder	6.19%
	CV Death	-	-	-	-	-	100%

Table 3 Costs

Drug*/Event type	Value (¥)
SPC	4.10 per pill
Clopidogrel	2.98 per pill
Aspirin	0.50 per pill
Maintenance treatment for stable patients ^[1]	4,447 per year
Treatment for MI ^[1]	35,270 per event
Maintenance treatment for MI (0-1 year) ^[1]	5,579 per year
Maintenance treatment for MI (>1 year) ^[1]	4,447 per year
Treatment for IS ^[1]	15,384 per event
Maintenance treatment for IS (0-1 year) ^[1]	7,016 per year
Maintenance treatment for IS (>1 year) ^[1]	6,950 per year
Revascularization ^[1]	62,308 per event
Treatment for bleeding ^[1]	15,786 per event
CV death ^[1]	37,168 per event

Table 5 Base Case Results

	PSC	Free combo	Difference
Health Outcomes			
DALVs Per Patient	8 75	8 77	0 0225

patient. SPC was a dominant therapy. (Table 5)

SENSITIVITY ANALYSIS

- One-way sensitivity analysis showed the results were generally robust (Figure 3).
- 1000 times Monte-Carlo simulation results showed that patients treated with SPC could gain more QALY and save costs, which indicated that SPC was 100% dominant. (Figure 4).

*Top 10 inputs that impact the results were displayed.

Figure 3 Tornado Diagram

CONCLUSION

Compared to free combo , SPC (Clopidogrel aspirin, tab in tab) was a dominant choice for ACS patients in China by preventing cardiovascular events and saving costs.

ICER		Dominant	
Cumulative Direct Costs	75,049.38	74,468.61	-580.78
Cumulative Cost of Treatment	764.05	781.94	17.89
Costs (¥)			
Total Fatal (CV) or Non-Fatal CV Events	1.01	1.01	-0.0052
Total Non-Fatal CV Events Per Patient	0.68	0.68	-0.0040
LYs Per Patient	11.30	11.32	0.0195

Figure 4 Incremental Cost-effectiveness Scatterplot

REFERENCES

- [1] Tianjing Urban Employee Basic Medical Insurance Database
- [2] Matza, L.S., et al. BMC Health Serv Res 15, 173 (2015).
- [3] Betts, M.B., et al. Health Qual Life Outcomes 18, 251 (2020).
- [4] Wei, Q., et al. Front Pharmacol, 2023. 14: p. 1156081.

Acknowledgements: This analysis was funded by Sanofi. **Corresponding to:** Li HC Email: lihongchao@cpu.edu.cn.

Financial Disclosure Statement: Jun Tan, Lijie Wang, Abdul Jabbar Omar Alsaleh, Charlie Nicholls are Sanofi employees and may hold shares and/or stock options in the company. Other authors have nothing to disclose.