Treat-and-Extend Versus As-Needed Regimen in Neovascular Age-Related Macular Degeneration: 1-Year Findings from a Network Meta-Analysis

Xiaoning He¹, Fang Qi², Jia Liu¹, Jing Wu¹

1. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 2. Systematic Review Solutions Ltd., Shanghai, China Correspondence to: Prof Xiaoning He (hexn@tju.edu.cn)

Introduction

In the last decade, the incidence of age-related macular degeneration (AMD) in Asia has gradually increased, and it has become the third leading cause of blindness in China¹. Neovascular AMD (nAMD) is characterized by choroidal neovascularization (CNV), which affects only 10%-15% of patients with AMD but accounts for 90% of severe vision loss caused by AMD².

Anti-vascular endothelial growth factor (VEGF) treatment for nAMD has been demonstrated to inhibit retinal angiogenesis and avoid associated vision loss³; however, outcomes are dependent on consistent injections or monitoring as well³⁻⁵.

- It is a challenge for clinicians to determine the optimal treatment regimen for nAMD given the variety of anti-VEGF regimens available, in particular how to balance vision improvement with the burden of treatment.
- We conducted a network meta-analysis (NMA) to explore differential functional outcomes between treat and extend (T&E) and as-needed (pro re nata [PRN]) regimens and compared their injection burden in routine clinical practice.

Methods

Protocol Registration: PROSPERO CRD42022333024

Data sources and searches

- Data Sources: MEDLINE, Embase, the Cochrane Library, Web of Science, Chinese BioMedical Literature Database, Wanfang, China National Knowledge Infrastructure, and VIP databases
- Data searches: All databases were searched in January 2021.

Criteria for considering studies

Included studies of randomized controlled trials (RCTs) published in English or Chinese, which met the following criteria:

Network analysis results for mean injections at 1 year

Figure 4c. MD of number of injections of IVT-AFL T&E-2 to other anti-VEGF regimens

Figure 4d. MD of number of injections of IVT-AFL T&E-4 to other anti-VEGF regimens

IVT-AFL T&E-4 Compared with other anti-VEGF regimens

- Patients: Adult patients (≥18 years of age) with nAMD (whether treatment-naïve or not)
- Interventions: Three anti-VEGF drugs (intravitreal ranibizumab [IVR], intravitreal aflibercept [IVT-AFL], and intravitreal conbercept [IVC]) are commonly used in clinical practice in China.
 - ✓ IVT-AFL, IVR, and IVC using a T&E or PRN regimen
 - ✓ Any other regimens which could increase the available indirect information in the network (such as monthly or bimonthly therapies)
- Primary outcomes
 - Mean change from baseline in best-corrected visual acuity (BCVA) at 1 year
 - Mean number of injections at 1 year

Data extraction, quality assessment, and data analysis

Extracted data

- Study information: Name of first author, year of publication, trial name/registration number, study design (protocol of randomization or blind), region, multicenter or not, sample size (number of patients and eyes), and inclusion/exclusion criteria
- Baseline characteristics: Description of interventions (dosage, frequency), gender, age, treatment-naïve or not (number of patients who were treatmentnaïve), baseline visual acuity, and baseline central retinal thickness
- Outcomes and results data: Definition of the outcomes, observed timepoint, results data (mean and standard deviation, number of missing, and total number for analysis)

Quality assessment

Seven domains of the Cochrane Risk of Bias tool⁶ were evaluated, including sequence generation, allocation concealment, blinding of patients and personnel, blinding of outcome assessment, incomplete outcome data, selective outcome reporting, and other biases.

Data analysis

	H2018	-	-	-	-	+	+	
Study	H2020	+	-	-	-	+	+	+
	HARBOR	+	-	-	+	+	+	+
	L2018	-	-	-	-	+	+	+
	L2019	+	-	-	-	+	+	+
	MANTA	-	-	+	+	×	+	+
	N2019	+	+	+	+	+	+	-
	P2013	+	+	-	-	+	+	+
	PHOENIX	+	+	+	+	+	+	+
	RIVAL	+	-	+	-	×	+	-
	S2010	-	-	+	+	×	+	+
	S2014	+	-	+	+	-	+	+
	T2019	+	-	-	-	+	+	+
	TREND	-	-	-	+	+	+	+
	TREX-AMD	-	-	-	-	+	+	+
	VIEW1	-	-	+	+	+	+	-
	VIEW2	-	-	+	+	+	+	-
	X2019	+	-	-	-	+	+	+
	Z2016	+	-	-	-	+	+	+
	Z2017	+	-	-	-	+	+	+

Figure 2. Risk of bias of included RCTs

Network geometry for the two primary outcomes

20 RCTs (involving 5,372 patients) reporting the two primary outcomes were included in this NMA.

MD (95% Crl)

Summary of Results

- At a 1-year follow-up, results indicated that there were no clear differences in BCVA improvements between the included anti-VEGF regimens.
- The mean number of injections for IVT-AFL T&E was less than that for T&E and PRN ranibizumab regimens. Although the mean number of injections was less for IVT-AFL T&E extended by 4 weeks than for IVC PRN, statistical significance was not reached.

Conclusions

- Different anti-VEGF regimens may provide similar visual benefits following 1 year of treatment.
- IVT-AFL T&E (with either 2- or 4-week adjustments) may reduce injection burden for patients with nAMD.

References

- The random-effects NMA with a Bayesian framework was conducted. The pooled estimations were obtained using the Markov chain Monte Carlo method. The model convergence was assessed by trace plots and Brooks-Gelman-Rubin plots⁷. Continuous outcomes were estimated using the standardized mean difference (SMD) or mean difference (MD) and its 95% credible interval (CrI). Evidence inconsistency and clinical similarities in patient characteristics and settings across trials were carefully assessed before analysis.
- Software: R 3.6.3 (GeMTC package)⁸

Results

Study selection and risk of bias assessment

- A total of 29 RCTs (involving 8,402 patients) were included (Figure 1).
- Risk of bias was assessed for each RCT (Figure 2).

A total of 11 interventions were extracted from the 20 included RCTs (Figure 3).

Direct comparisons are represented by the lines connecting the different interventions. BEV, intravitreal bevacizumab; IVC, intravitreal conbercept 0.5 mg; IVT-AFL, intravitreal aflibercept 2 mg; IVR, intravitreal ranibizumab 0.5 mg; MON, monthly; PRN, pro re nata; Q8W, every 8 weeks; T&E-2, treat-and-extend with 2-week adjustment; T&E-4, treat-andextend with 4-week adjustment

Figure 3. The direct comparison network of main analysis

1. Wong WL, et al. Lancet Glob Health. 2014;2(2):e106-e116. 2. Bressler NM, et al. ArchOphthalmol. 2003;121(11):1621-1624. 3. Ohr M, Kaiser PK. Expert Opin Pharmacother. 2012;13(4):585-591. 4. Brown DM, et al. N Engl J Med. 2006;355(14):1432-1444. 5. Rosenfeld PJ, et al. N Engl J Med. 2006;355(14):1419-1431. 6. Higgins JPT, et al. BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928 7. Gelman A, Rubin DB. Stat Sci. 1992;7(4):457-472. doi:10.1214/ss/1177011136 8. R Core Team (2018). Available online at https://www.R-project.org/.

Disclosures

This study was sponsored by Bayer Healthcare Company Ltd, Beijing, China. Funding was not contingent on presentation of the data.