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Results
After preprocessing and data cleaning (removing 9 with missing pressure injury status), the final sampling
contains 1,911 patients, which is divided into training (80%) and testing (20%) data. Table 1 shows the
performance of different models for predicting the occurrence of HAPrI. We observe that the stacked
ensemble model achieves the best overall performance on the testing data (Accuracy: 81%; AUC: 0.78;
AUCPR: 0.53).

Figure 2 depicts the SHAP summary plot for this stacked ensemble model. Each point on the summary plot
is a SHAP value for a feature and an instance where the overlapping points are jittered in the y-axis
direction to represent the distribution of SHAP values. The position on the y-axis is determined by the
feature and on the x-axis by the SHAP value, with the color representing the value of the feature from low
to high. We order the features according to their importance. From the plot, we can see that the top three
features are: total ICU hours, maximum Modified Early Warning Score (MEWS), and the length of stay for
the hospital admission. These features are further reviewed by clinical experts to optimize tactical
implementation.

Objectives
The goal is twofold: (1) using modern machine learning methods to enhance the performance of risk
assessment for hospital-acquired pressure injuries. (2) developing explainable-AI techniques to better
understand potential HAPrI etiology and extract features for more accurate risk assessment.

Methods
Ensemble machine learning: In machine learning, ensemble methods use multiple learning algorithms to
obtain better predictive performance than each base learner alone [1]. Figure 1 depicts the structure of the
stacked ensemble model with three base models: random forest (rf), gradient-boosted machine (gbm), and
neural network (NN). The training dataset goes through each base learner, and a meta-learner combines
each learner's generated predictions to enhance the prediction performance. We compare different models
with the stacked ensemble model and evaluate the performance on the testing data.
Explainable-AI (XAi): SHAP (SHapley Additive exPlanations) is a method to explain individual predictions
and interpret the feature importance based on the game-theoretically optimal Shapley values [2]. We use
SHAP values to help explain the variable average marginal contributions to the black-box stacked ensemble
model and perform an iteration of clinical expert review to reformat and re-weight predictor variables.

Conclusions
Most critical care patients are designated high-risk when using industry-standard assessment tools, such
as the Braden Scale. Machine learning approaches may better discriminate high-risk critical care patients
than these standard tools.

Using existing EHR data to develop risk algorithms allows for near real-time risk assessment and reduction
in redundant charting. Furthermore, using XAi techniques, we were able to understand how specific
features in the model influenced the predicted outcome.

Clinicians are reluctant to trust and incorporate Ai, even when it outperforms clinician judgment. By
enabling clinicians to understand algorithm decision-making on the patient level, XAi will enhance trust and
support collaborations between clinicians and data scientists to detect anomalies and augment algorithms
to enable expert-augmented machine learning. Additionally, there are pressing issues related to clinical
algorithm development, including ethics, algorithm-encoded bias, trust, regulation, and encouraging expert
interaction, which have implications for the future of XAi design and motivates additional study.

Key Points 
● Ensemble models are known to outperform component (base) models and have great

performance
● XAi provided intuitive and clinically plausible explanations for why a patient might

develop a pressure injury in the ICU
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Type Random 
Forest

K nearest
Neighbor

Logistic 
Regression

Neural 
Network

Gradient
Boosting

Stacked
Ensemble

AUC 0.7761 0.7157 0.7565 0.73 0.7698 0.7759

AUCPR 0.5231 0.4415 0.5016 0.4775 0.5119 0.5289 

ACCURACY 0.8061 0.7976 0.8015 0.8 0.8064 0.8086
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Figure 1. Flowchart for the Stacked Ensemble Model

Figure 2. SHAP Summary Plot for the Stacked Ensemble Model.

Table 1. Performance of different models for predicting the occurrence of HAPrI.

Abstract
Objectives: Hospital-acquired pressure injuries (HAPrI) are areas of injury to the skin and/or underlying
tissues. Risk stratification is essential for guiding prevention in the ICU, but current risk assessment tools
require labor-intensive input. This motivates a tactical, parsimonious, and automatic risk profiling algorithm
based on readily available clinical measures (e.g., COVID status, race, Medicare/Medicaid status).
Additionally, International Pressure Injury Prevention guidelines call for developing machine learning-based
risk assessment algorithms that are clinician-interpretable and context-informed.

Methods: Adult patients admitted to one of two ICUs between April 2020 and April 2021 were eligible for
inclusion. Discrete and ensemble super-learning models, adjusting for class imbalance, were created from
a rich library of candidate base learners. For explainability, SHAP (SHapley Additive exPlanations) global
and local values were derived to help explain variable average marginal contributions (across all
permutations) to the model. An iteration of clinical expert review was performed with the SHAP values, and
simulations of patient profiles and results were used to reformat and re-weight predictor variables. All
analysis was run in open Python (version 3.7), and code/results will be available via a GitHub page.

Results: The final sample consisted of 1,911 patients (removing 9 with missing pressure injury status).
Hospital-acquired pressure injuries (defined as stage 2, or worse) occurred in 18.5% of the sample (n=354).
We achieved the best overall performance on the testing data with a stacked ensemble using three base
models: random forest (rf), gradient boosted machine (gbm), and neural network (NN) (Performance on
20% holdout: Accuracy: 81%; AUC: 0.78; AUCPR: 0.53).

Conclusion: Prediction engineering should be done in collaboration with clinical experts to optimize tactical
implementation to both optimize performance, with minimal interruption to workflow. XAi enhanced adoption
of the experts’ advice based on the selected model features.
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