Cost-Effectiveness of Heart Failure (HF) Treatments– A Targeted Literature Review (TLR)

Rui Cai, PhD¹; Nitendra Kumar, MSc²; Francesca Barion, PhD³; Dhvani Shah, MSc⁴; Xuan Wang, MSc (presenting author)⁵; Vanessa Danielson, MSc⁵; Joanna Murphy, MBA⁷

¹ ICON Health Economics, ICON plc, Amsterdam, The Netherlands ⁵ ICON Health Economic ² ICON Health Economics, ICON plc, Bangalore, India ⁶ Global VP Market Acc ³ Global Health Economics Director, LivaNova, Milano, Italy ⁷ Global Senior Director ⁴ ICON Health Economics, ICON plc, Blue Bell, United States ⁷ Global Senior Director	s, ICON plc, Stockholm, Sweden ess, LivaNova, London, United Kingdom Market Access, LivaNova, London, United Kingdom			
BACKGROUND & OBJECTIVES	METHODS			
 The worldwide prevalence of HF was estimated to be 64.3 million cases (8.5 per 1,000 inhabitants) in 2017¹. 	Eligibility criteria			
Patients with HF may have been treated with chronic pharmacological treatments along with cardiac implantable	A literature search was conducted in EMBASE, MEDLINE, EconLit, NHS EED and HTA databases.			
electronic devices (implantable cardioverter-defibrillator [ICD], cardiac resynchronization therapy [CRT], and	Modelling studies assessing the cost-effectiveness of pharmacological treatment and medical devices in CHF were			
ventricular assisted device) ² .	included (limits: 2011-2021 and English language).			
This study aimed to assess the health economic evidence of chronic heart failure (CHF) treatments through a TLR.	Key countries of interest were UK, US, Japan, Australia, Germany, China, and France.			
RESULTS				
Overview of included studies	Model approach and technical specification			
 The title and abstract of 2,668 abstracts were screened and 22 papers (Table 1) were included in the review. 	 Markov models were the most common modelling technique (n=18), followed by risk equations (n=4). 			
Eighteen studies assessed the cost-effectiveness of pharmacological treatments: sacubitril/valsartan (n=8),	• Eight studies categorized patients based on the New York heart association (NYHA) classification, four studies used			
dapagliflozin (n=5), empagliflozin (n=1), ivabradine (n=3), and vericiguat (n=1); and four studies assessed cost-	disease classifications based on diabetes status and Kansas City Cardiomyopathy Questionnaire Score (KCCQ).			
effectiveness of medical devices (ICD / CRT pacemakers [CRT-P], CRT defibrillator [CRT-D], Baroreflex activation	Model inputs			
therapy [BAT], and cardiac contractility modulation [CCM]).	Clinical inputs for NYHA progression, hospitalization and mortality were derived from RCTs (CARE-HF, DAPA-HF,			
Cost-effectiveness studies were based in US (n=8), UK (n=4), Germany (n=3), Australia (n=3), China (n=2) or multiple	PARADIGM-HF, SHIFT, FIX-HF) or published literature.			
countries (n=2).	 NYHA progression: the majority (5/8) of studies which categorized patients by NYHA classification assumed the 			
 Eleven studies included patients with left ventricular ejection fraction (LVEF) ≤40%, eight studies with LVEF ≤35%, 	same NYHA progression probabilities between the intervention and comparator.			
one study with LVEF ≤45% and one study with LVEF 25%-45%. Except for three studies, all studies included patients	 Hospitalization: HF hospitalization and/or all-cause hospitalization were captured across majority of the studies. 			
with NYHA classes II-IV; two studies included NYHA class III and one included all NYHA classes.	Hospitalization probabilities were assumed to be constant across time horizon in most (17/22) studies.			
Cost-effectiveness analysis results	 Mortality: All-cause mortality and cardiovascular (CV) were captured across majority of the studies. 			
Compared to standard of care, all active treatments were reported as cost-effective at the specific willingness to part	• Utility inputs were also derived from RCTs (CARE-HF, DAPA-HF, PARADIGM-HF, SHIFT, FIX-HF and VICTORIA) or			
thresholds for each country, except in one study, ICD, CRT-P and CRT-D were found to be cost-effective only in	published literature.			
specific patient sub-groups.	Resource use and costs included the cost of drug acquisition, routine management of HF (including costs of visits to			
Across the studies, relative-risk for hospitalization and death, cost of treatment, utility values, time horizon and age	physician, medication, and rehabilitation), HF and non-HF hospitalization. In studies assessing cost-effectiveness of			
of patients were identified as key model drivers.	medical device, costs of initial implant operation and replacement, and battery replacement were also included.			

of patients were identified as key model drivers.

Table 1. Summary of included cost-effectiveness studies

Author, Year	Country -perspective	Intervention vs comparator	Time horizon, cycle length	Input source	NYHA class, LVEF	Model design	Health states	Approach/tool used for utility	ICER
Sandhu 2016 ³	US - Societal	Sacubitril-valsartan vs Lisinopril	Lifetime, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	2 HS: alive or dead	EQ-5D	\$47,053
King 2016 ⁴	US - Medicare	Sacubitril-valsartan vs Enalapril	Lifetime, 3 months	PARADIGM-HF	II-IV, ≤35%	Markov model	5 HS: NYHA class I, II, III, and IV and death	EQ-5D	\$50,959
McMurray 2018 ⁵	UK, Denmark, Colombia – Public healthcare	Sacubitril-valsartan vs Enalapril	Lifetime, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	2 HS: alive or dead	EQ-5D	UK: £17,134; Denmark: €22,620; Colombia: €11,200;
Chin 2020 6	Australia – Public healthcare	Sacubitril-valsartan vs Enalapril	20 years, 1 year	PARADIGM-HF	II-IV, ≤35%	Markov model	2 HS: alive (with HFREF) and Dead	EQ-5D	\$40,513 (AUD)
Zueger 2018 7	US - Medicare	Sacubitril-valsartan vs Enalapril	5 years, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	5 HS: NYHA class I, II, III, and IV and death	EQ-5D	\$143,891
van der Pol 2019 *	Germany- Statutory Health Insurance	Sacubitril-valsartan vs Enalapril	30 years, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	4 HS: outpatient treated HFrEF, hospital admissions to a general ward, hospital admissions including a stay at the ICU, death	EQ-5D	€19,300
Gaziano 2016 9	US - Medicare	Sacubitril-valsartan vs Enalapril	30 years, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	2 HS: alive or dead	EQ-5D	\$45,017
Wu 2020 10	China – patient	Sacubitril-valsartan vs Enalapril	10 years, 1 month	PARADIGM-HF	II-IV, ≤40%	Markov model	5 HS: NYHA class I, II, III, and IV and death	EQ-5D	\$2,481
Savira 2021 11	Australia – Public healthcare	Dapagliflozin + SoC vs SoC	Lifetime, 1 year	DAPA-HF	II-IV, ≤40%	Markov model	3 HS: 'alive and event-free', 'alive after non-fatal hospitalisation for heart failure' and 'dead'	EQ-5D	\$12,842 (AUD)
Parizo 2021 12	US - Medicare	Dapagliflozin vs SoC	Lifetime, 1 month	DAPA-HF	II-IV, ≤40%	Markov model	6 HS: patients on dapagliflozin, patients on SoC, left ventricular assist device, heart transplant, non-CV death, CV death	KCCQ>EQ-5D	\$83,650
Isaza 2021 13	US - Medicare	Dapagliflozin + GDMT vs GDMT	Lifetime, 1 month	DAPA-HF	II-IV, ≤40%	Markov model	5 HS: no event, HF hospitalization, urgent care, incident diabetes, death	KCCQ>EQ-5D	\$68,300 UK: £5.822:
McEwan 2020 14	UK, Germany, Spain – Public healthcare	Dapagliflozin + SoC vs SoC	Lifetime, 1 month	DAPA-HF	II-IV, ≤40%	Markov model	5 HS: 4 subgroups per KCCQ score and dead	KCCQ>EQ-5D	Germany: €5,379;
Yao 2020 15	China – Public healthcare	Dapagliflozin + SoC vs SoC	15 years, 3 months	DAPA-HF	II-IV, ≤40%	Markov model	5 HS: NYHA class I, II, III, and IV and death	EQ-5D	Spain: €9,406 \$3,828
Adena 2019 16	Australia – Public healthcare	Ivabradine + SoC vs SoC	Lifetime, 6 months	SHIFT	II-IV, ≤35%	Markov model	5 HS: stable HF; HF hospitalisation; HF death; non-HF CV death; and non-CV death.	EQ-5D	\$14,905 (AUD)
Griffiths 2014 17	UK – Public healthcare	Ivabradine + SoC vs SoC	Lifetime, 1 month	SHIFT	II-IV, ≤35%	Risk equations	5 subgroups: NYHA class I, II, III, and IV and death	EQ-5D	Baseline heart rate ≥75 bpm: £8,498; baseline heart rate ≥70 bpm: £13,764
Kansal 2016 18	US - Medicare	Ivabradine + background therapy vs Background therapy	10 years, 1 month	SHIFT	II-IV, ≤35%	Markov model	11 HS: 10 mutually exclusive hospitalization and death	EQ-5D	\$24,920
Alsumali 2021 19	US - Medicare	Vericiguat + SoC vs SoC	30 years, 1 month	VICTORIA	II-IV, ≤45%	Markov model	4 HS: alive prior to HF hospitalization, alive during HF hospitalization, alive post HF hospitalization, death	EQ-5D-5L	\$82,448
Kansal 2019 20	UK – Public healthcare	Empagliflozin + SoC vs SoC	Lifetime, NR	EMPA-REG OUTCOME	NR, NR	Risk equations	10 CV and renal events including stroke, HF hospitalization, and CV death	EQ-5D	£4,083
Borisenko 2018 21	Germany - Statutory Health Insurance	BAT vs OMT	Lifetime, 1 month	CARE-HF	III, ≤35%	Decision tree + Markov model	5 HS: NYHA class I, II, III, and IV and death.	EQ-5D	€27,951
	statutory regular insurance			FIX-HF Phase 1					
Witte 2019 22	UK – Public healthcare	CCM + SoC vs SoC	Lifetime, 1 month	FIX-HF Phase 2 FIX-HF-5C	III, 25-45%	Risk equations	4 subgroups: NYHA functional classes I& II, III, IV, and death	MLWHFQ>EQ-5D	£22,988
Mealing 2016 ²³	UK – Public healthcare	ICD, CRT-P or CRT-D vs medical therapy	Lifetime, 1 month	Meta-Analysis	I-IV ≤35%	Risk equations	3 outcomes: all-cause mortality, all-cause hospitalization, HRQoL	EQ-5D	- CRT-D is cost-effective in 10 of 24 subgroups; - ICD is cost-effective in all non-NYHA IV patients with QRS < 120 m and for NYHA I/II non-LBBB morphology patients with 120 ms-QRS < 149 ms - CRT-D is cost-effective in all NYHA III/IV patients with ORS120mm
Hadwinger 2021 ²⁴	Germany- Statutory Health	CRT-D + OMT vs CRT-P + OMT	20 years, 1 month	Meta-Analysis and CARE-HF	II-IV, ≤35%	Markov model	6 HS: stable (by NYHA class I, II, III, IV), hospital and death.	EQ-5D	€24,659

CONCLUSIONS

• Results of this TLR can be useful for physicians and other decision-makers to prescribe appropriate treatments for CHF.

s in Phar

• Evidence on the cost-effectiveness of medical devices is limited, suggesting an unmet need for an appropriate and economic treatment option in patients uncontrolled on pharmacological therapy.

Some studies included in this review used the NYHA classification as a proxy for disease severity, however; the use of this instrument has been questioned given limitations around its reproducibility, reliability, and clinician's interpretation

This abstract was presented in its original format at ISPOR EUROPE 2022 on 7 November, in Vienna, Austria.

6. Chin KL, et al. Heart, Lung and Circulation. 2020;20(9):1310-1317. 11. Savina F, et al. European Journal of Preventive Cardiology. 2020;28(9):975-982. 16. Adena MA, et al. Heart Lung and Circulation. 2019;28(3):414-422.

of what construes "normal" in patients who present with HF. 14

REFERENCES

- Lippi G, et al. AME Med J. 2020;5(15):1-6
- Choi HM, et al. Korean J Intern Med. 2019;34(1):11-43.

McMurray JJV, et al. Heart 2018;104(2):1006-1013.

- otherapy. 2018;38(5):520-530. 12. Parizo JT, et al. JAMA Cardiology. 2021;6(8):926-935. 7. Zueger PM, et al. Pharmaci 3. Sandhu AT, et al. Annals of Internal Medicine. 2016;165(10):681-689. 8. van der Pol S, et al. Value in Health. 2019;22(10):1119-1127. 13. Isaza N, et al. JAMA Network Open. 2021; e2114501.
- 4. King JB, et al. JACC: Heart Failure 2016;4(5):392-402.

10. Wu Y, et al. Fr

9. Gaziano TA, et al. JAMA Cardiol 2016;1(6):566-672. 14. McEwan P, et al. European Journal of Heart Failure 2020;22(11):2147-2156. 19. Alsumali A, et al. PharmacoEconomics. 2021;1170:7690. 15. Yao Y, et al. ESC Heart Failure. 2020;7(6):3582-3592.

17. Griffiths A, et al. Heart. 2014;100(13):1031-1036. 18. Kansal AR, et al. Journal of the American Heart Association 2016;5(5):e003221. 23. Mealing S, et al. Heart 2016;102(21):1742-1749.

20. Kansal A, et al. Diabetic Medicine. 2019;36(11):1494-1502

24. Hadwiger M, et al. Applied Health Economics and Health Policy. 2021;19(1):57-

21. Borisenko O, et al. BMC Cardiovascular Disorders. 2018;18(1):163.

22. Witte K, et al. ESC Heart Failure. 2019;6(6):1178-1187