# **Cost-effectiveness analysis of a new second-line treatment** EE433 for advanced intrahepatic cholangiocarcinoma: biomarker-driven targeted therapy with pemigatinib versus chemotherapy with 5-FU

# Chen-Han Chueh<sup>1</sup>, Yi-Wen Tsai<sup>1</sup>, Zi-Rong Chen<sup>1</sup>, Ming-Neng Shiu<sup>1</sup>, Yu-Wen Wen<sup>2</sup>, Nai-Jung Chiang<sup>1,3</sup>

<sup>1</sup>National Yang Ming Chiao Tung University, Taipei, Taiwan; <sup>2</sup>Chang Gung University, Taoyuan, Taiwan; <sup>3</sup>Taipei Veterans General Hospital, Taipei, Taiwan

## Background

- The National Comprehensive Cancer Network recommends second-line treatment of pemigatinib for patients with advanced intrahepatic cholangiocarcinoma (ICC) with fibroblast growth factor receptor 2 (FGFR2) fusions/rearrangements and a combination of oxaliplatin, folinic acid, and fluorouracil (modified FOLFOX, mFOLFOX) for those without *FGFR2* alterations.
- However, these regimens are not yet covered by Taiwan's National Health Insurance (NHI), and there is currently no cost-effectiveness analysis (CEA) evidence for the NHI reimbursement scheme to reference.

# **Objectives**

This CEA evaluates the cost-effectiveness of the pemigatinib/mFOLFOX regimen as the second-line treatment for advanced ICC based on FGFR2 status in comparison with the regimen of fluorouracil (5-FU) chemotherapy and provides a CEA-based reference price for pemigatinib.

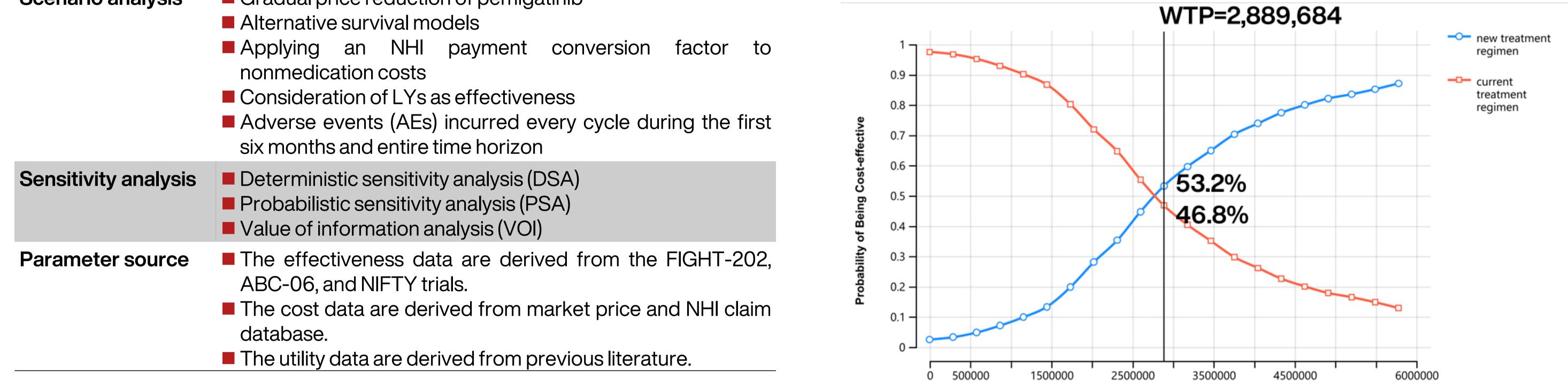
# Methods

The analytical framework and parameters of this decision model are listed below:

### Table 1. Analytical framework

| Population           | Advanced ICC patients who failed first-line therapy                                                                                                                        |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Intervention         | Patients with <i>FGFR2</i> fusions/rearrangements use pemigatinib and those without <i>FGFR2</i> alterations use mFOLFOX                                                   |  |  |  |  |  |
| Comparator           | 5-FU                                                                                                                                                                       |  |  |  |  |  |
| Cost                 | Genetic testing fee, direct medication cost, and nonmedication cost (Self-paying items are not included.)                                                                  |  |  |  |  |  |
| Outcome              | Life-years (LYs) and quality-adjusted life-years (QALYs)                                                                                                                   |  |  |  |  |  |
| Study design         | 3-state partitioned survival model<br>(progression-free, progressed disease, and death)                                                                                    |  |  |  |  |  |
| Perspective          | National Health Insurance Administration, Taiwan                                                                                                                           |  |  |  |  |  |
| Time horizon         | 5 years                                                                                                                                                                    |  |  |  |  |  |
| <b>Discount rate</b> | 3% per year to costs and outcomes                                                                                                                                          |  |  |  |  |  |
| Willingness-to-pay   | 3 times the GDP in 2021 (NT\$2,889,684)                                                                                                                                    |  |  |  |  |  |
| Scenario analysis    | <ul> <li>Gradual price reduction of pemigatinib</li> <li>Alternative survival models</li> <li>Applying an NHI payment conversion factor to page direction costs</li> </ul> |  |  |  |  |  |

## **Base-case results**

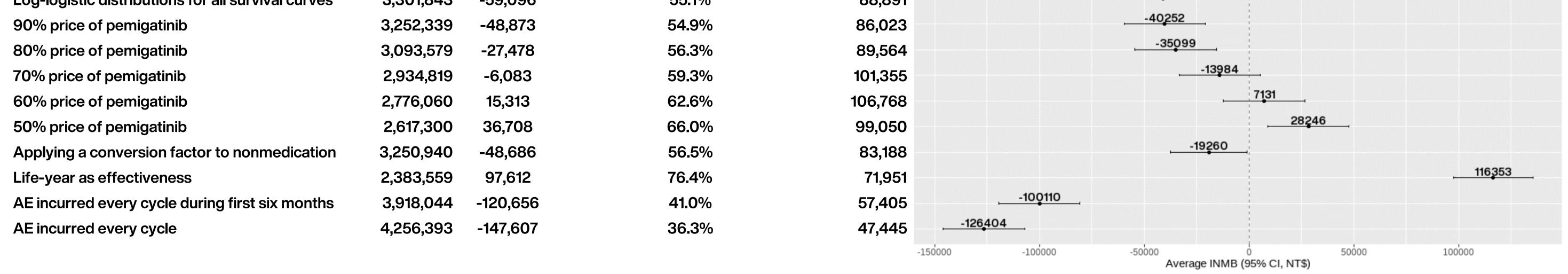

- The new regimen provided an incremental 0.13 QALY, with incremental costs of NT\$459,697, yielding an incremental cost-effectiveness ratio (ICER) of NT\$3,411,098 per QALY and an incremental net monetary benefit (INMB) of -NT\$70,268, which was not cost-effective in the base-case analysis.
- The new regimen was found to be 53.2% cost-effective in PSA.

#### Table 2. Cost-effectiveness results

| Regimen             | Cost        | LY gained     | QALY gained   |
|---------------------|-------------|---------------|---------------|
| pemigatinib/mFOLFOX | NT\$984,168 | 0.86          | 0.61          |
| 5-FU                | NT\$524,472 | 0.67          | 0.47          |
|                     |             |               |               |
| Difference          | NT\$459,697 | +0.19         | +0.13         |
| ICER                |             | NT\$2,419,458 | NT\$3,411,098 |
| INMB                |             | NT\$89,343    | NT\$-70,269   |

Willingness-to-pay (NT\$)

#### Figure 1. Cost-effectiveness acceptability curve




## **Scenario analysis results**

- The INMB was positive when the price of pemigatinib was reduced by 40% or more.
- The new regimen gained similar probabilities of being cost-effective under the scenario of reducing 20% price of pemigatinib, using log-logistic distributions for all survival curves, and applying a conversion factor to nonmedical costs.
- When assuming AEs incurred every cycle during the first six months and the entire time horizon, the probability of the new regimen being cost-effective was dramatically reduced.

#### Figure 2. Scenario analysis results

|                                                    | <b>Base-case analysis</b> |         | Probabilistic sensitivity analysis |                  |               |
|----------------------------------------------------|---------------------------|---------|------------------------------------|------------------|---------------|
| Scenario                                           | ICER                      | INMB    | Probability of being cost-effec    | tive EVPI/person |               |
| Base-case                                          | 3,411,098                 | -70,268 | 53.2%                              | 80,695           | <u>-50846</u> |
| Log-logistic distributions for all survival curves | 3 301 843                 | -20 006 | 55 10%                             | 88 801           | -41110        |



## Conclusions

Although the new second-line genetic-based and biomarker-driven regimen of pemigatanib/mFOLFOX is not cost-effective for patients with advanced ICC in the base-case analysis, it is highly likely to be cost-effective in the case of a 40% price reduction on pemigatinib.

Contact information: Chen-Han Chueh, student of NYCU, e-mail: chchueh.y@nycu.edu.tw; Yi-Wen Tsai, professor of NYCU, e-mail: ywtsai@nycu.edu.tw; Nai-Jung Chiang, assistant professor of NYCU, e-mail: njchiang@vghtpe.gov.tw This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.