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A B S T R A C T

State-transition modeling is an intuitive, flexible, and transparent ap-
proach of computer-based decision-analytic modeling including both
Markov model cohort simulation and individual-based (first-order
Monte Carlo) microsimulation. Conceptualizing a decision problem in
terms of a set of (health) states and transitions among these states,
state-transition modeling is one of the most widespread modeling
techniques in clinical decision analysis, health technology assessment,
and health-economic evaluation. State-transition models have been
used in many different populations and diseases, and their applica-
tions range from personalized health care strategies to public health
programs. Most frequently, state-transition models are used in the
evaluation of risk factor interventions, screening, diagnostic proce-
dures, treatment strategies, and disease management programs. The
goal of this article was to provide consensus-based guidelines for the
application of state-transition models in the context of health care. We

structured the best practice recommendations in the following sec-
tions: choice of model type (cohort vs. individual-level model), model
structure, model parameters, analysis, reporting, and communication.
In each of these sections, we give a brief description, address the issues
that are of particular relevance to the application of state-transition
models, give specific examples from the literature, and provide best
practice recommendations for state-transition modeling. These rec-
ommendations are directed both to modelers and to users of modeling
results such as clinicians, clinical guideline developers, manufacturers,
or policymakers.
Keywords: decision-analytic modeling, guidelines, Markov models,
state-transition modeling.
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Background to the Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the ISPOR Board of Directors in 2010, and the Society
for Medical Decision Making was invited to join the effort. The
Task Force cochairs and members are expert developers and ex-
perienced model users from academia, industry, and govern-
ment, with representation from many countries. Several tele-
conferences and hosted information sessions during scientific
meetings of the Societies culminated in an in-person meeting of
the Task Force as a whole, held in Boston in March 2011. Draft
recommendations were discussed and subsequently edited and

circulated to the Task Force members in the form of a survey
where each one was asked to agree or disagree with each recom-
mendation, and if the latter, to provide the reasons. Each group
received the results of the survey and endeavored to address all
issues. The final drafts of the seven articles were available on the
ISPOR and SMDM Web sites for general comment. A second
group of experts was invited to formally review the articles. The
comments received were addressed, and the final version of
each article was prepared. (A copy of the original draft article, as
well as the reviewer comments and author responses, is available
at the ISPOR Web site: http://www.ispor.org/workpaper/
State-Transition-Modeling.asp.) A summary of these articles was
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Use of State-Transition Models (STMs)

Many clinical situations can be described in terms of the condi-
tions that individuals can be in (“states”), how they can move
among such states (“transitions”), and how likely such moves are
(“transition probabilities”). In these situations, STMs are often well
suited to the decision problem, as they conceptualize it in terms of
a set of states and transitions among these states. Several dimen-
sions fall within this broad category. For example, some STMs
allow for interactions among groups (i.e., the transition probabili-
ties depend on the states of other individuals), while others as-
sume no interactions. Some allow transitions to occur only at
specified time intervals, while others use a continuous state-space
process. STMs can be used to simulate a closed cohort over time or
a dynamic population (e.g., the US adult population). They may
simulate all individuals simultaneously or one at a time.

We focus on two common frameworks in health care: cohort,
or “Markov,” models [7,8] and individual-based models, com-
monly known as “first-order Monte Carlo” or “microsimulation”
models [9–11]. These frameworks do not capture interactions,
model a single (closed) cohort, and allow transitions to occur only
at specified time intervals.

An STM should be used, rather than a simpler model with lim-
ited ability to reflect time (e.g., decision tree), if it requires time-
dependent parameters (e.g., recurrence probability after cancer
treatment), time to an event (e.g., disease-free survival), or re-
peated events (e.g., second myocardial infarction) [12]. Other mod-
eling techniques are also suitable for these situations (e.g., dis-
crete event simulation).

Key Concepts and Definitions

The formal elements of an STM are states, transitions, initial state
vector, transition probabilities, cycle length, state values (“re-
wards”), logical tests performed at the beginning of each cycle to
determine the transitions, and termination criteria.

Model Structure

STMs are structured around a set of mutually exclusive and col-
lectively exhaustive health states. A modeled individual must be
in only one state in any cycle. Events that occur within a cycle can
be modeled with a Markov cycle tree—a series of chance nodes
representing the events. The average number of cycles that indi-
viduals reside in each state can be used in conjunction with state
values (e.g., life-years, health-related quality-of-life, and cost) to
estimate life expectancy, quality-adjusted life expectancy, and ex-
pected costs.

An STM can capture many features present in the course of a
disease or clinical process (e.g., disease risk over time, changing
states, and episodic events), although this is not the only approach
that can capture these features [13]. The principal advantage of
cohort STMs is that they are relatively simple to develop, debug,
communicate, and analyze using user-friendly software if the
number of states is not too large. The primary disadvantage is the
underlying assumption that transition probabilities do not de-
pend on history—neither on past states nor on the time spent in
the current state. This assumption (the “Markovian” property)
can be very limiting for clinical applications where these as-
pects tend to be strong determinants of what happens next. A
Markov model can handle memory by creating states that in-
clude history, but this can greatly increase the number of states,
resulting in very large models that are difficult to manage (i.e.,
“state explosion”).

Individual-level STMs (Table 1) are not limited by the Mark-
ovian property as they simulate one individual at a time. These
microsimulations are evaluated by using first-order Monte
Carlo simulation: whether an individual facing a certain transi-
tion probability makes this transition depends on a random
number.

Whereas cohort models are analyzed as single cohorts pro-
gressing through the states simultaneously (which does not allow
distinguishing one individual from another except by state de-
scriptions), individual-level STMs keep track of each individual’s
history (“tracker variables”). This can greatly reduce the number of

presented at a plenary session at the ISPOR 16th Annual Inter-
national Meeting in Baltimore, MD, in May 2011, and again at the
33rd Annual Meeting of the Society for Medical Decision Making
in Chicago, IL, in October 2011. These articles are jointly pub-
lished in the Societies’ respective journals, Value in Health and
Medical Decision Making. Other articles in this series [1–6] describe
best practices for conceptualizing models, building and applying
particular types of models, and addressing uncertainty. This ar-
ticle addresses best practices for state-transition models (STMs)

and considers both cohort (“Markov”) and individual-level (“mi-
crosimulation”) implementations. Examples are cited through-
out, without implying endorsement or preeminence of the pa-
pers referenced and 4 appendices (in Supplemental Materials
found at http://dx.doi.org/10.1016/j.jval.2012.06.014) are pro-
vided detailing the terms used in this report; examples of indi-
vidual-level state-transition models; some options for producing
simplified graphical model representations; and additional fig-
ures displaying a Markov trace.

Table 1 – Cohort versus individual-level state-transition models.

Cohort state-transition models Individual-level state-
transition models

Ease of model development Higher (if the number of states is limited) Lower
Ease of model debugging Higher (if the number of states is limited) Lower
Ease of communication to nonexperts Higher Lower
Markov assumption, memoryless Yes No
Ease of modeling many different subgroups Lower Higher
Danger of explosion in number of states Yes No
Distribution of outcomes (as opposed to only means) Possible, but technically more difficult Yes
Report of individual patient histories No Yes
Decision-analytic software available Yes Yes (need advanced knowledge)
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states. The main disadvantages are that they are computationally
intensive, often requiring simulation of millions of individuals to
obtain stable values for the outcomes of interest, and they are
more difficult to debug. Figure 1 displays the Markov trace of a
cohort simulation and the possible paths of a microsimulation.

An STM must start with a decision node from which the inter-
vention branches originate. Each branch leads either to a Markov
node (followed by an STM) (Fig. 2A) or to a decision tree, which
leads to multiple Markov nodes per intervention (Fig. 2B). An STM
following one branch can have a different structure than one fol-
lowing another branch.

Types of interventions

STMs can be used to compare various types of interventions [14].

Primary prevention
STMs used to evaluate primary prevention strategies are con-
cerned with reduction in the risk of developing a disease (e.g., [15]).
Hence, their focus is on what happens prior to disease, such as the
number and severity of risk factors. The starting cohort is individ-
uals free of disease or complications being modeled.

Screening
STMs used to evaluate screening strategies [16,17] consider two
types: one-time screening, (e.g., of newborns [18] or genetic
screening [19–21]) or repeated (interval) screening (e.g., for cancer
[22–25] or HIV [26,27]). The evaluated screening strategies can dif-
fer in many respects, such as the type and sequence of tests used,
diagnostic workup modes, screening interval, and ages at which
screening begins and ends.

Diagnosis
Diagnostic models are used to identify optimal diagnostic strategies
among individuals who present with signs or symptoms of one or
more suspected diseases [28]. Testing options may involve the use
of one test versus another, one test versus multiple tests, dif-
ferent combinations or sequences, using one positivity criterion
versus another (e.g., [29]) or a multiple-test diagnostic score, or
focusing on the development of new diagnostic technologies [30].

Treatment
Treatment is defined as any intervention available for someone
who already has a clinical condition that affects health conse-
quences or prognosis. An STM disease process should reflect the

Fig. 1 – In a cohort simulation (A), the entire cohort is (re-)distributed across states after each cycle. In an individual-
level microsimulation (B), a finite number of individuals are simulated by using first-order Monte Carlo
microsimulation. In this simple example, all individuals start in the state ‘Well’ and the disease is chronic (i.e., there
is no regression from “Disease” to “Well”). In principle, individuals can start in different states and they can regress
to states they have already been in. (A) Cohort simulation in a state-transition model. (B) Monte Carlo simulation in a
state-transition model.

A B
Reponse

No response
Treatment A

Response

No response
Treatment B

Patient with disease X
Treatment A

Treatment B
Patient with disease X

Fig. 2 – In model (A), decision branches lead directly to one Markov node per intervention strategy and the first events are
modeled within the Markov cycle tree. Model (B) contains an up-front decision tree modeling the first events and leading to
multiple Markov nodes per intervention strategy.
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disease’s natural history, expected prognostic pathways in the ab-
sence of intervention, and treatment effects [31–33].

Recommendations

An STM is a reasonable choice when the decision problem can be
framed in terms of states, the interactions between individuals are
not relevant, and the population of interest is a closed cohort. Multi-
purpose disease-specific models (e.g., [34]) are not addressed here.

Choice of model type

Before choosing between cohort or individual-level simulation,
the characteristics of the population that must be carried through
the model (i.e., state descriptors or tracker variables) must be spec-
ified. These must include all relevant states pertaining to the dis-
ease or clinical process and intervention(s) and all relevant histo-
ries (e.g., past states, risk factors, time in state, and time since last
event) that are determinants of transition probabilities (e.g., deter-
minants of disease incidence, progression, and mortality) or state
values (e.g., determinants of utilities and costs). An advantage of
using an individual-level STM is the ability to model individual
characteristics as continuous variables and to evaluate dynamic
intervention strategies—ones in which future decisions depend
on current and past patient characteristics. In cohort STMs, con-
tinuous variables (e.g., blood pressure) have to be categorized;
some guidance exists for determining how many states to create
[35]. Individual-level STMs [36,37], however, require more compu-
tation time, which may be important if probabilistic sensitivity
analyses or value-of-information analyses are performed.

Two examples of STMs that required microsimulation include
one comparing intermediate and long-term clinical outcomes of dif-
ferent imaging screening strategies for breast cancer in women with
BRCA1 gene mutations [36] and one developed to estimate the long-
term impact of interventions for people with type 2 diabetes [37].

Best practices

III-1. If the decision problem can be represented with a manageable
number of health states that incorporate all characteristics relevant to
the decision problem, including the relevant history, a cohort simula-
tion should be chosen because of its transparency, efficiency, ease of
debugging, and ability to conduct specific value of information analy-
ses. If, however, a valid representation of any aspect of the decision
problem would lead to an unmanageable number of states, then an
individual-level state-transition model is recommended. Validity
should not be sacrificed for simplicity.

Model structure

Problem statement
Interventions may be single time (e.g., one-time vaccination or
surgery); static over time (i.e., not depending on intervention out-
comes or other events); or dynamic (consisting of decision rules
for how to start, stop, or change interventions over time [38]). Ex-
amples of dynamic strategies are 1) the start of a preventive be-
havioral intervention if the body mass index increases, 2) increase
in the screening interval for cervical cancer if a woman has repeat-
edly tested negative, 3) repetition of a diagnostic test after an
equivocal result, and 4) change to another drug after first-line
treatment failure.

This recommendation refers to standard STMs. Other methods
such as Markov decision processes generalize STMs by allowing
embedding of sequential decisions, and thus, multiple decisions
can be made in multiple time periods [39,40].

Best practices

III-2. The strategies being evaluated should be clearly defined. In par-
ticular, sequential decisions should not be modeled within the Markov
cycle tree but rather be part of the specification of the alternative inter-
vention strategies that precede the Markov tree.

Starting Cohort

The model outputs for a single cohort allow for the comparison of
alternative strategies for that cohort. If the optimal decision varies
by subgroup (e.g., defined by age, sex, and risk factors known to the
decision maker at the time of the decision), the comparison can be
reported for different cohorts. If outputs are desired for a popula-
tion-based starting cohort, the model must be run multiple times,
one for each stratum, and then aggregated across strata (e.g., [41]).

Best practice
III-3. The starting cohort should be defined by the demographic and
clinical characteristics that affect the transition probabilities or state
values (e.g., quality of life and cost).

Defining States

Conceptualization of an STM should begin by identifying states
that reflect the disease/health process, with transitions among the
states that would be expected in the absence of intervention, and
the interventions’ effects on these. The states should be specified
as mutually exclusive (any individual can be in only one state
during each cycle) and collectively exhaustive (every individual in
the initial cohort must be in a state during each cycle) and should
adequately capture the benefits or harms of any interventions.
These effects can characterize the state values (e.g., differences in
symptoms and quality of life) or reflect changes in transition prob-
abilities.

At the start of a cohort simulation, the modeled population is
allocated among the states. Each state is homogeneous—every
individual in that state has the same transition probabilities—im-
plying that any characteristics that determine those probabilities
must not differ within the state. If history (prior states or time
spent in a current state) is important in determining transition
probabilities, the relevant states should carry that history in their
definition (e.g., if the risk of myocardial infarction depends on
prior myocardial infarction, then the states would need to include
this historical element by using states such as “disease-free, no
prior MI” and “disease-free, prior MI”). In an individual-level STM,
these characteristics and other parameters can be heterogeneous
within a state but must be tracked throughout and transition prob-
abilities must be defined as a function of these characteristics.

When there are alternatives for modeling natural history (e.g.,
defining states with biological but often unobservable disease
measures such as spirometry in asthma or with symptomatic de-
scriptions such as “on treatment” stages for Parkinson’s disease),
the analyst should justify the approach used or compare alterna-
tives in sensitivity analysis. Although it may be possible to de-
scribe natural history solely on the basis of health care utilization,
this does not provide direct insight into health outcomes at the
biological level and its value is limited for most decision problems.
If the cause of death is an important outcome, or different causes
have different costs, competing causes should be modeled in an
unbiased way (e.g., probability of death modeled first, followed by
a conditional distribution of cause-specific deaths).

Another important consideration in structuring an STM is ini-
tial immediate or short-term events. An efficient and transparent
way to model such events is as a decision tree preceding the STM,
unless there are justified reasons for representing them within the
states. When events are modeled preceding an STM, the time
spent before entering the STM should be captured appropriately
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by giving credit to the starting cohorts for the time elapsed (e.g., an
up-front decision tree could be used to represent results and sub-
sequent outcomes from diagnostic test strategies [29], or treat-
ments with limited duration [33], or initial coronary interventions
[31]; Fig. 3).

Best practices
III-4. Specification of states and transitions should generally reflect the
biological/theoretical understanding of the disease or condition being
modeled.

Intervention effects

For models evaluating primary prevention, possible risk factor lev-
els in the target population should be represented as predisease
states or tracker variables. As current risk factors are often predic-
tors of future ones, the state descriptions or tracker variables
should capture their course and changes in sufficient detail. These
models may not require as much detail postdisease as would
those evaluating interventions for the disease, but they should
sufficiently capture the relevant disease elements. One useful ap-
proach is to collaborate with investigators with well-developed
disease-specific treatment models to derive relevant eventual out-
comes (e.g., lifetime costs or survival) that can be used in the pre-
vention model [42,43].

Models evaluating screening should define states reflecting the
underlying disease process, especially for interval screening pro-
grams. It is not appropriate to take an empirical estimate of the
probability of a positive screen from a study because this does not
explicitly incorporate the underlying disease probability. For can-
cer screening, states should distinguish between cases detected by
screening and incidental findings (e.g., through other diagnostic
tests) or cases detected by symptoms. Modelers should describe
how they have controlled for lead time and length bias [44]. Dy-
namic interval screening strategies (“individualized screening”)
may depend on screening history (e.g., some algorithms for cervi-
cal cancer screening recommend extension of the interval after
repeated negative tests). As capturing screening history in the
Markov states can lead to state explosion, it may be necessary to
use an individual-level STM, with screening history included as
tracker variables [22].

In models evaluating diagnostic strategies, it is typical to
represent the testing pathways and their outcomes (e.g., true
positive, false positive) in a pre-STM decision tree. If multiple
tests are performed in combination or sequence, and some re-
sults are prognostic factors that can change over time, their
history must be incorporated in the states or implemented as
tracker variables.

In models evaluating therapeutic strategies, the mechanism by
which the treatment alters the disease course should be explicit

(e.g., reduction in event risk or mortality, slowing disease pro-
gression). In addition, how harms of the intervention(s) affect
prognosis should be specified. STMs should incorporate realistic
assumptions about adherence over time. Long-term treatment
effectiveness and costs often depend on time-varying heteroge-
neous patient characteristics, and many treatments are “per-
sonalized” and follow dynamic rules (e.g., dose and second-line
treatments, and compliance and treatment success depend on
current treatment response and side effects). These dynamic
characteristics should be considered in the states or tracker
variables.

Best practices
III-5. States should adequately capture the type of intervention (i.e.,
prevention, screening, diagnostics, treatment) as well as the interven-
tion’s benefits and harms.

Heterogeneity

In a cohort STM, all individuals in a given state are indistinguish-
able in terms of their transition probabilities. Many characteristics
that affect transition probabilities (e.g., age, sex, comorbidities,
and disease stage) are known at the time of the decision and can
be used to define the starting cohorts. These characteristics do
not need to be incorporated into state definitions or tracker
variables unless they are expected to change over time in a
meaningful way. For example, a cohort starting with few comor-
bidities may develop more over time, and to capture this re-
quires incorporating this attribute in the states. Variables that
affect transition probabilities but are not known at decision
time (e.g., genetic mutation and undiagnosed infection) can cre-
ate “heterogeneity bias” [45,46], and inclusion of such variables
should be considered.

Best practices
III-6. States need to be homogeneous with respect to both observed and
unobserved (i.e., not known by the decision maker) characteristics that
affect transition probabilities.

Time horizon

The time horizon relates to the number of cycles or the duration
for which the cohort is tracked. Common approaches include
modeling to an age of 120 years or tracking the cohort until more
than 99.9% of the individuals are dead. If the intervention affects
mortality, the time horizon should be lifetime to capture (quality-
adjusted) life-years gained from delayed deaths.

Procedure Subtree
(decision tree)

Time horizon: immediate

Initial Success Subtree
(decision tree)

Time horizon: 6 months
Post-Revascularization 

Submodel
(Markov Model)

Time horizon: lifetimeInitial Complication

Fig. 3 – The model consists of two decision trees and one Markov model. Source: Siebert U. based on Cohen et al. (1994).
With kind permission from Springer Science+Business Media: Z Kardiol, The role of decision-analytic models in the
prevention, diagnosis and treatment of coronary heart disease, 3, 2002, III/148, U. Siebert, Fig. 2.
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Best practices
III-7. The time horizon for the model should be sufficiently large to
capture all health effects and costs relevant to the decision problem.

Cycle length

Choice of cycle length should be based on the clinical problem,
remaining life expectancy, and computational efficiency. It
should allow transitions to occur consistent with the clinical
problem and intervention effects (e.g., a model assessing
monthly screening requires cycles no longer than 1 month).
Cycle length should be short enough that an event occurs at
most once per cycle. Shorter cycle lengths provide better ap-
proximations of life expectancy. If life expectancy is relatively
short (e.g., with an acute disease or at older ages), a shorter cycle
length should be considered, even if the clinical problem does
not warrant it. Although shorter cycles will always yield more
precise estimates, the error gets very small when the number of
cycles required increases.

Best practices
III-8. Cycle length should be short enough to represent the frequency of
clinical events and interventions.

Model symmetry

Symmetric models ensure that the disease process is repre-
sented consistently across strategies. For example, STMs used
to compare cardiac catheterization and subsequent treatment
dictated by its results versus initial medical therapy should
specify true underlying disease status even though it is not ob-
served in the medical therapy strategy [47]. Otherwise, errors
result when conducting sensitivity analysis on the underlying
probability of any particular anatomy (e.g., left main disease).

Best practices
III-9. Components of state-transition models that reflect similar clinical
courses should not be recreated but rather should be incorporated once
and linked to that structure throughout the model.

Data

STMs should provide clear justification for estimates of transi-
tion probabilities and state values and their ranges for sensitiv-
ity analysis.

Data sources

Ideally, transition probabilities pertaining to natural history are
derived from population-based epidemiological studies, as these
are most likely to be representative. Transition probabilities may
be derived from the control arms of trials, recognizing that these
may be less generalizable because of selection criteria for partici-
pants. If multiple sources are available, summarized data from a
systematic review or meta-analysis are best for informing tran-
sition probabilities or state values. Methods assessing the qual-
ity of a body of evidence rather than the quality of individual
studies are available [48 –50]. In the absence of good systematic
reviews, a detailed evidence table should be provided in an ap-
pendix with a description and justification of how key parame-
ters—including the ranges used for sensitivity analyses—were
derived.

Best practices
III-10. Transition probabilities and intervention effects should be
derived from the most representative data sources for the decision
problem.

Parameter derivation

Transition probabilities and rates should be used appropriately
[51]. The conversion of transition probabilities from one time
unit to another should be done through rates, which should
never be presented as percentages. To avoid confusion, proba-
bilities should never be called rates.

The assumed functional relationship between disease-specific
and background mortality should be stated. Because an assumption
of additive rates can give very different results than a multiplicative
one [52], the impact of this assumption should be assessed.

Best practices
III-11. All methods and assumptions used to derive transition proba-
bilities and intervention effects should be described.

Intervention effects

Efficacy derived from randomized clinical trials may have to be
adjusted for compliance to reflect real-world effectiveness [53].
Effectiveness derived from observational studies must be adjusted
for confounding (e.g., using multivariate regression techniques or
propensity scoring). Adjustment for time-varying confounding
(i.e., confounders that simultaneously act as intermediate steps in
the pathway between intervention and outcome) require special
methods such as marginal structural analysis or g-estimation
[38,54]. When results from observational studies are used in the
model, causal graphs can be used to explicitly state causal as-
sumptions [53].

When extrapolating beyond a trial’s duration, reductions in
all-cause mortality should not be applied directly since back-
ground mortality (from other causes) increases with age. If dis-
ease-specific mortality is not available, a relative reduction can be
applied to disease-specific mortality, providing a conservative es-
timate of treatment benefit. Alternatively, life-table mortality
could be subtracted from total mortality to estimate the reduction
in disease-specific mortality [55].

For preventive and therapeutic interventions, if evidence is
available for reduction in disease incidence, events, or progression
and also for mortality, using both may double count. If this is a
concern, the consistency of the model-generated reductions
should be validated with estimates from clinical studies.

Best practices
III-12. All parameters relating to the effectiveness of interventions
derived from observational studies should be correctly controlled for
confounding. Time-varying confounding is of particular concern in es-
timating intervention effects.

State valuation

Expected outcomes depend on values assigned to each state
(e.g., quality-adjusted life-years can be derived if utilities are
assigned). State values should be justified, preferably on the
basis of theory.

Best practices
III-13. The valuation of intermediate outcomes/states should be justi-
fied.

Analysis

Half-cycle correction
When it is not known when the transitions occur within the
cycle, we expect that, on average, they will occur about half-way
through the cycle. To account for this, a half-cycle correction is
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made by assigning half of the reward in each state. Giving a full
reward at the start (i.e., transitions occur at cycle end) overes-
timates expected values; assigning no reward (i.e., transitions
occur at cycle start) underestimates them [8].

Best practices

III-14. A half-cycle correction should be applied to costs and effective-
ness in the first cycle and in the final cycle if not using a lifetime
horizon.

Analyzing distributions

It may be important for the decision maker (e.g., for equity rea-
sons) to know whether a treatment with a 1-year life expectancy
gain extends life by 1 year for each person or by 3 years in 50% but
reduces life by 1 year in the other 50%. Distributions are derived
easily from individual-level STMs, but they can also be derived
from cohort models, either by analyzing the Markov trace or by
running the model individually (but without tracker variables).

Best practices
III-15. For certain decision problems, it may be important to report not
only the expected value but also the distribution of the outcomes of
interest.

Performing microsimulation

To achieve stable results in an individual-based simulation, suffi-
cient individuals must be modeled. Stability of model results is
assessed by calculating variance from multiple runs with identical
number of individuals [55], which should be much smaller than
the smallest difference expected between strategies. Variance re-
duction techniques (e.g., using common random numbers) can
decrease the required numbers [56].

Best practices
III-16. The number of individuals simulated should be large enough to
generate stable estimates of the expected values.

Communicating results

Graphical representation of an STM helps communicate key struc-
ture and most important assumptions made regarding states and
allowable transitions. Since rigorous studies evaluating alterna-
tive presentation methods are lacking, these recommendations
represent best judgments based on experience.

Presenting the model

STMs are often represented by two types of diagrams: a state-
transition diagram, also known as a “bubble diagram,” and a
Markov cycle tree (a set of probability nodes that describes the
progression from one state to the next). State-transition dia-
grams represent states as discrete compartments (“bubbles”)
and transitions as arrows between them. While a relatively sim-
ple model with few states may be fully represented in a single
diagram, complicated models consisting of multiple states can-
not feasibly be represented by displaying all states and transi-
tions. Such models are invariably cluttered, and the resultant
tangle of arrows and states often impairs communication,
rather than enhancing it. In such circumstances, simplified or
partial diagrams are desirable. Markov cycle trees, often styl-
ized, can display the transitions between states, and probabili-
ties and transitions that are conditional upon other events or
parameters.

Best practices
III-17. The report should use nontechnical language and clear figures
and tables that enhance understanding of the STM to communicate its
key structural elements, assumptions, and parameters.

Presenting results

Presenting intermediate results can be helpful for demonstrat-
ing face validity for clinical experts, epidemiologists, and deci-
sion makers. Useful measures include incidences related to a
fixed time horizon (e.g., 10-year risks), average number of
events per lifetime, percentage of initial cohort that experi-
enced two or more events in their lifetime, or mean age at which
the first event occurred. In addition, it can be useful to generate
summary data from STMs to indicate how much time is spent in
certain states (e.g., a model of stroke prevention in atrial fibril-
lation could report the average amount of time spent without a
stroke and the average time from first stroke to death). Such
measures can also be used for debugging the model or for vali-
dating model results with empirical data or for internal debug-
ging. As STMs allow deriving the time at which particular tran-
sitions occur, the results can be represented as (modeled)
probability or survival curves and directly compared with sur-
vival curves from empirical studies.

Best practices
III-18. In addition to final outcomes, intermediate outcomes that en-
hance the understanding and transparency of the model results should
also be presented.

Validation and Consistency

Ensuring that the STM provides a sufficiently accurate repre-
sentation of the real system is important. This is covered in
detail elsewhere in this series [6]. A useful method of identifying
programming errors in an STM is to check whether model-
building rules such as the use of symmetric branches or states
in STMs are followed. Inspection of the Markov trace can also
help find errors, by setting parameters in such a way that how
the trace will look can be predicted (e.g., so that no modeled
individual will visit a given state during the simulation).

Conclusions

STMs can provide a comprehensive and powerful tool to guide
decisions in health care. Best practices, for cohort and individual-
based STMs, are recommended for the development, analysis, val-
idation, and reporting of STMs. Although many more aspects than
those described in this article may have to be considered for good
modeling practice, and not all models may be able to comply with
all the recommendations, following these recommendations
should help to make STMs more valid, transparent, and useful in
guiding health care decisions.
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