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A B S T R A C T

Trust and confidence are critical to the success of health care models.
There are two main methods for achieving this: transparency (people
can see how the model is built) and validation (how well the model
reproduces reality). This report describes recommendations for achiev-
ing transparency and validation developed by a taskforce appointed by
the International Society for Pharmacoeconomics and Outcomes Re-
search and the Society for Medical Decision Making. Recommendations
were developed iteratively by the authors. A nontechnical descrip-
tion—including model type, intended applications, funding sources,
structure, intended uses, inputs, outputs, other components that de-
termine function, and their relationships, data sources, validation
methods, results, and limitations—should be made available to any-
one. Technical documentation, written in sufficient detail to enable a
reader with necessary expertise to evaluate the model and potentially
reproduce it, should be made available openly or under agreements
that protect intellectual property, at the discretion of the modelers.

Validation involves face validity (wherein experts evaluate model
structure, data sources, assumptions, and results), verification or inter-
nal validity (check accuracy of coding), cross validity (comparison of
results with other models analyzing the same problem), external valid-
ity (comparing model results with real-world results), and predictive
validity (comparing model results with prospectively observed events).
The last two are the strongest form of validation. Each section of this
article contains a number of recommendations that were iterated
among the authors, as well as among the wider modeling taskforce,
jointly set up by the International Society for Pharmacoeconomics and
Outcomes Research and the Society for Medical Decision Making.
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Background to the Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the ISPOR Board of Directors in 2010, and the Society for
Medical Decision Making was invited to join the effort. The Task
Force cochairs and members are expert developers and experi-
enced model users from academia, industry, and government, with
representation from many countries. Several teleconferences and
hosted information sessions during scientific meetings of the Soci-
eties culminated in an in-person meeting of the Task Force as a
whole, held in Boston in March 2011. Draft recommendations were
discussed and subsequently edited and circulated to the Task Force
members in the form of a survey where each one was asked to
agree or disagree with each recommendation, and if the latter, to
provide the reasons. Each group received the results of the survey
and endeavored to address all issues. The final drafts of the seven
articles were available on the ISPOR and Society for Medical Deci-
sion Making Web sites for general comment. A second group of

experts was invited to formally review the articles. The comments
received were addressed, and the final version of each article was
prepared. (A copy of the original draft article, as well as the reviewer
comments and author responses, is available at the ISPOR Web site:
http://www.ispor.org/workpaper/Model-Transparency-and-
Validation.asp.) A summary of these articles was presented at a
plenary session at the ISPOR 16th Annual International Meeting
in Baltimore, MD, in May 2011, and again at the 33rd Annual
Meeting of the Society for Medical Decision Making in Chicago,
IL, in October 2011. These articles are jointly published in the
Societies’ respective journals, Value in Health and Medical Decision
Making. Other articles in this series [1–6] describe best practices
for conceptualizing models, building and applying particular
types of models, and addressing uncertainty. This article ad-
dresses best practices for transparency and validations and is
intended to apply to all types of models. Examples are cited
throughout, without implying endorsement or preeminence of
the articles referenced.
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Introduction

The purpose of health care models is to provide decision makers
with quantitative information about the consequences of the op-
tions being considered. For a model to be useful for this purpose,
decision makers need confidence in the model’s results. Specifi-
cally, they need to know how accurately the model predicts the
outcomes of interest and account for that information when de-
ciding how to use the model results.

Modelers can impart such confidence and enhance model
credibility in two main ways: 1) transparency—clearly describing
the model structure, equations, parameter values, and assump-
tions to enable interested parties to understand the model and 2)
validation—subjecting the model to tests such as comparing the
model’s results with events observed in reality [7–14].

Some health care models are intended to be “general” or “mul-
tiapplication” in the sense that with appropriate modifications
they can address a range of problems [15,16]. For example, an “HIV
model” could be used repeatedly to address different questions
relating to that condition [17–21]. Other models are built for single,
specific applications and are not intended to be reused [22]. For
instance, a model may be built with the sole purpose of extrapo-
lating the results of a trial of an implantable cardioverter-defibril-
lator to determine whether it becomes cost-effective over the life-
time of patients [23]. Some models that are initially built for a
single application may later be expanded to address others. The
methods described in this article apply to both types of models.
For a multiapplication model, transparency, validation, and re-
porting are ongoing processes. The multiapplication model is de-
scribed (transparency) [24] and validated [25], and the descriptions
and validations are continuously updated as science and the
model evolve [26]. In addition, each instantiation of the model is
described, validated, and reported as each application is done [27].
For a single�application model, its description and validation, and
the reporting of its application, are typically conducted at one
time, although there may be additional validations after initial
use, particularly if problems are found.

Our objective was to describe practices that we consider to be
“best” in the sense of providing potential users of a model with the
information necessary to determine their confidence in the re-
sults, and hence their application of the model’s results. Every
model today should be able to achieve the best practices we rec-
ommend for transparency. We recognize, however, that not all
models will be able to achieve all the recommended best practices
for validation. Rather than establish minimum quality standards,
we have described optimal practices that all models should strive
toward. For all models, their developers should describe their pro-
cess for conducting validations and the level of validation their
model achieved. These recommendations are particularly impor-
tant in light of high-profile examples of scientific misconduct and
fraudulent research published in leading scientific journals, lead-
ing to increasing emphasis on transparency and “shining a light
on black boxes” [28–34].

Transparency

Transparency refers to the extent to which interested parties can
review a model’s structure, equations, parameter values, and as-
sumptions. It does not refer to the formulation, conduct, or results
of a particular analysis. Transparency serves two purposes: 1) to
provide a non�quantitative description of the model to readers
who want to understand in a general way how a model works and
2) to provide technical information to readers who want to evalu-
ate a model at higher level of mathematical and programming
detail, and possibly replicate it (the term “reader” describes any-
one who needs to evaluate a model, including journal reviewers,

journal readers, and users of a model’s results). Taken together,
the intention is to provide sufficient information to enable the full
spectrum of readers to understand a model’s accuracy, limita-
tions, and potential applications at a level appropriate to their
expertise and needs.

Nontechnical documentation

Nontechnical documentation should be accessible to any interested
reader [35–37]. It should include descriptions of the following:

1. The model and its purpose
2. Types of applications it is designed to address (e.g., forecasting

of short�term costs, cost�effectiveness analysis)
3. Sources of funding and their role
4. Structure (e.g., graphical representation of the variables and

their relationships)
5. Components that define it and determine its performance
6. Inputs, outputs, and other parameters
7. Equations and their sources
8. How the data sources were identified and selected
9. Model validation and summary of results

10. Methods for customizing to specific applications and settings
11. Effects of uncertainty
12. Main limitations for its intended applications
13. Examples of actual equations (optional)
14. Reference to the model’s technical documentation

The nontechnical documentation provides an overview of the
model and what it does, but it may not contain sufficient informa-
tion to enable readers to replicate it.

Technical documentation

Full technical transparency is achieved by providing documents
that detail the model, including its structure, components, equa-
tions, and computer code. The documentation should be suffi-
ciently detailed to enable those with the necessary expertise and
resources to reproduce the model. Provision of technical docu-
mentation is subject to some conditions and limitations:

1. Access should be provided in a way that enables protection of
intellectual property. Building a model can require a significant
investment in time and money; if those who make such invest-
ments had to give their models away without restriction, the
incentives and resources to build and maintain complex mod-
els could disappear.

2. While not mandatory, an increasing number of journals request
that authors state whether full technical documentation is
available to readers, and if so, under what terms [28,38]. Tech-
nical documents may be placed in appendices or made acces-
sible by other means [28,29,31,39]. Provision of such documen-
tation is not without concerns that the context of the original
analysis may be missing [40].

3. Because most multiapplication models change over time—ex-
panded and updated to incorporate new information and ad-
vances in health care technologies—technical documents
should be updated periodically.

4. Equations and detailed structure will mean little to readers
without the necessary technical background. Even with such
information, reviewing a model can take considerable time.
Furthermore, it is very difficult to understand how accurate a
model is simply by examining its equations. Even if the equa-
tions appear to be valid in a mathematical sense and the pa-
rameters appear to be estimated using appropriate sources and
methods, it is virtually impossible for anyone to determine a
model’s accuracy by “running” it in one’s head. Providing the
code does not solve this problem unless the reader has the time
and resources to actually implement it, which for large models
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or models that require advanced computing methods (e.g., dis-
tributed computing) can be very difficult. Provision of code in
this way would also threaten the protection of intellectual
property. Some of these limitations can be addressed by giving
readers access to the model or to a version applicable to a par-
ticular analysis. Even enabling readers to specify inputs and
receive outputs of a model without releasing a full copy of it can
provide useful information about how the model functions.
Thus, if feasible, modelers should give readers access to the
model itself or parts applicable to a particular analysis. Having
said this, it is important to note that providing such access can
be very expensive, including the cost to build the copy and in-
terfaces and support to ensure that the model is used and in-
terpreted accurately. Modelers who make working copies ac-
cessible to readers should be credited for providing an
exceptionally high level of transparency, but failure to do this
should not imply any failure on the part of the modeler and
should not prejudice an evaluation of the model.

Public versus confidential documentation

To address the conflicting needs of transparency versus feasibility
and intellectual property, information put in the public domain
without restriction (“public documentation”) should be distin-
guished from information made available under agreements that
protect intellectual property (“confidential documentation”). For
public documentation, the nontechnical description should be
available to all who ask. In addition, at their discretion, modelers
can choose to make technical documentation, or a working copy of
the model, publicly available. Regarding confidential documenta-
tion, modelers should provide full technical documentation (along
with access to a working copy) to readers designated either by a
journal reviewing a paper or by an organization to which the
model is provided for decision making, under agreements protect-
ing intellectual property (peer reviewers should keep the technical
documentation confidential as a matter of policy). Providing read-
ers with technical information under conditions of confidentiality
is consistent with published requirements for the review of mod-
els [41]. Given the documentation’s size and technical nature,
need to protect intellectual property, and because journals can
gain full access to all documentation during the review process,
journals should not require that it be included in the published
report of an analysis.

Best practices

VII-1 Every model should have non−technical documentation that
should be freely accessible to any interested reader. At a minimum it
should describe in non−technical terms the type of model and intended
applications; funding sources; model structure; inputs, outputs, other
components that determine the model’s function, and their relation-
ships; data sources; validation methods and results; and limitations.

VII-2 Every model should have technical documentation, written in
sufficient detail to enable a reader with the necessary expertise to
evaluate the model and potentially reproduce it. The technical docu-
mentation should be made available openly or under agreements that
protect intellectual property, at the discretion of the modelers.

Expectations

Even with these best practices, it will rarely be possible to make
any model completely transparent to all readers (e.g., given the
need for advanced mathematical or computer science training).
Lack of transparency to those who do not have the appropriate
training or time to study a model does not imply that the model is
necessarily flawed. It is also important to stress that transparency
by itself does not imply that a model is accurate. A model can be
transparent but yield the wrong answer (e.g., the erroneous for-

mula Distance � Rate/Time is transparent but wrong). Conversely,
a model can lack transparency for most readers, but be correct.
Ultimately, what matters is whether a model accurately predicts
what occurs in reality. Thus, transparency and validation are in-
extricably linked and both are required to help readers gain con-
fidence in a model’s results. Analogously, the equations used to
convert computed tomography (CT) scans into images are not
transparent to most physicians, yet physicians use CT scans all
the time. They are willing to do so because operations based on a
CT scan showing a mass almost always find a mass. The key to
developing confidence in a model is not just studying its structure,
assumptions, equations, and code, but assessing whether it accu-
rately calculates the outcomes of interest. This is the role of vali-
dation.

Validation

Importance of validation

Validation is a set of methods for judging a model’s accuracy in
making relevant predictions. That information can be used by de-
cision makers to determine the results’ applicability to their deci-
sion. While transparency can help readers understand what a
model does and how it does it, validation is the only way for read-
ers to determine how well it does it.

Validation is vital for both multi� and single�application
models. For multiapplication models, a distinction should be
made between validating in a general sense (e.g., as a “diabetes
model” or “heart disease model”) versus validating for a specific
application (e.g., the effect of a drug on glycemia in diabetes). For a
single�application model, validation can be limited to that appli-
cation.

It is not possible to specify criteria a model must meet to be
declared “valid,” as if validity were a property of the model that
applies to all its applications and uses for all time. First, because a
model can have different levels of validity for different applica-
tions, the concept of validation should apply to particular applica-
tions, not to the model itself. Second, the required degree of accu-
racy depends on the question. For example, much less accuracy is
needed to inform “Will this intervention increase or decrease
costs?” than to answer “How much will this intervention cost?” A
third reason applies to multiapplication models—they can and
should change over time to keep up with new science, technolo-
gies, and evidence. Thus, all validation types should be conducted
in the context of specific applications, and their reports should
include the intended applications.

No matter how many validations are done, there will inevitably
be uncertainty about some aspects of a model. Sensitivity analysis
can be used to explore how a model’s results change on variation
in inputs [6], but by itself, it does not evaluate how accurately a
model simulates what occurs in reality. Sensitivity analysis is an
important complement to validation, but not a substitute for it.

Types of validation

Five main types of validation are commonly described: face valid-
ity, verification (or internal validity), cross validity, external valid-
ity, and predictive validity. Face validity is the extent to which a
model, its assumptions, and applications correspond to current
science and evidence, as judged by people who have expertise in
the problem. Verification addresses whether the model’s parts be-
have as intended and the model has been implemented correctly.
Cross-validation involves comparing a model with others and de-
termining the extent to which they calculate similar results. In
external validation, a model is used to simulate a real scenario,
such as a clinical trial, and the predicted outcomes are compared
with the real�world ones. Predictive validity involves using a
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model to forecast events and, after some time, comparing the fore-
casted outcomes with the actual ones. Each type of validation has
methods, strengths, limitations, and best practices.

Face validity
Four aspects are particularly important for face validity: model
structure, data sources, problem formulation, and results. Face
validity is subjective; people who have clinical expertise should
evaluate how well each model component reflects their under-
standing of the pertinent medical science, available evidence, and
the clinical or administrative question at issue [42]. Information
about the model and supporting evidence are obtained from doc-
umentation provided by the modelers. Information about the
problem formulation and results is obtained from the applica-
tion’s report.

Specific questions depend on the component being evaluated.
For the structure, important questions are whether the model in-
cludes all aspects of reality considered important by experts, and
whether they are related in ways consistent with medical science;
for evidence, whether the best available data sources were used;
for problem formulation, whether the setting, population, inter-
ventions, outcomes, assumptions, and time horizons correspond
to those of interest; for results, whether they match experts’ ex-
pectations and, if not, whether the model can plausibly explain
them. If perceived weaknesses exist in any of these aspects, the
assessment should examine how well the authors have reported
and explained the discrepancies, and their potential effects on the
results. For example, if a model omits an important risk factor,
have the modelers described the direction and potential magni-
tude of any resulting bias?

Evaluation of face validity can occur in several ways. The group
that developed the model can appeal to members of the modeling
group, people in the same organization who did not build the
model, or external consultants. Any reader can perform his or her
own evaluation. Peer review typically includes an evaluation of
face validity. Because face validity is subjective, the evaluators
should have no stake in the problem at issue. Ideally, the struc-
ture, evidence, and problem formulation should be assessed with-
out knowing the results. As presently practiced, peer review of a
model for publication is insufficiently consistent to be relied on for
determining face validity.

Strengths and limitations. Face validation helps ensure a model
is constructed and used in accord with most current medical sci-
ence and best available evidence. This process enhances credibil-
ity with experts and increases acceptance of results. In addition,
the evaluation can raise questions and force thinking that im-
proves the model. If the results are counterintuitive but justified,
exploring the causes can identify new hypotheses and stimulate
additional data collection and research.

Face validation has several limitations, however. All models
simplify reality, many to a very large extent. Thus, the structure
may not be completely consistent with medical knowledge or be-
liefs and would not have face validity if strictly applied. For exam-
ple, physicians know that representing a complex disease as a
small number of discrete states is clinically unrealistic and that
patients do not jump from one state to another at fixed time inter-
vals as occurs in state-transition models. Despite these simplifi-
cations, for properly selected problems, state�transition models
can be sufficiently accurate to meet the needs [3]. It can be very
difficult for readers to determine in their heads whether a model
has been properly simplified, oversimplified, or undersimplified
for a particular problem.

Another limitation is that current medical evidence is incom-
plete and medical knowledge and beliefs can be wrong or can
change. Insistence on expert agreement with all aspects of the
model’s structure at any particular time can build misconceptions

into a model. For example, until recently virtually all experts be-
lieved that raising high-density lipoprotein cholesterol would pre-
vent cardiovascular events. Models excluding that presumed ef-
fect would have low face validity, yet a recent clinical trial
contradicted the presumption [43].

A third limitation is that there are no unambiguous criteria to
apply to judgments about a model or its application. Lacking these,
it is easy for anyone who has a stake to be swayed. More specifi-
cally, virtually all modelers would say that their model has face
validity. Anyone with a stake in the results may have a bias toward
accepting a model if one likes its results, or rejecting it if not.

Best practices

VII-3 Validation should include an evaluation of face validity of a
model’s structure, evidence, problem formulation, and results. A de-
scription of the process used to evaluate face validity should be made
available on request. To the greatest extent possible, evaluation of face
validity should be made by people who have expertise in the problem
area, but are impartial, and preferably blinded to the results of the
analysis. If face validation raises questions, these issues should be
discussed in the report.

Verification
This type of validity (also called internal validity, internal consis-
tency, or technical validity) [42,44–46] examines the extent to
which the mathematical calculations are performed correctly and
are consistent with the model’s specifications. The methods will
depend on the model’s complexity. There are two main steps:
verifying the individual equations and their accurate implemen-
tation in code. Equations and parameters should be validated
against their sources. Coding accuracy should be checked by using
state�of�the�art quality assurance and control methods for soft-
ware engineering [45,46]. Examples of techniques include main-
taining complete and up�to�date documentation of the code;
conducting structured “walk�throughs” in which the programmer
explains the code to other people who search for errors; verification
of separate parts of a model one by one; double programming, in
which sections of a model are programmed independently by two
programmers; comparing a model’s results with hand calculations;
sensitivity analysis; extreme value analysis; trace analysis, in
which individual events and their timing are tracked; and identi-
fication of unnecessary detail that might increase the likelihood of
errors. The choice of methods should be appropriate for a model’s
complexity.

Strengths and limitations. Verification helps ensure there are no
unintentional computational errors but does not evaluate the ac-
curacy of the model’s structure or predictions. Parameters for the
equations might be fitted using good data sources and technique,
and the equations might be accurately coded, but the resulting
model might still be inaccurate if the structure is poorly chosen.
For example, if a question involving distance (D), rate (R), and time
(T) is set up as D � � � �1R � �2T, instead of D � R � T, the
parameters �, �1, and �2 can be estimated properly and the equa-
tion can be coded correctly, but the results could be wrong, de-
pending on the ranges of R and T. Verification will not identify
such problems. Verification should also involve sensitivity analy-
sis of all parameters, evaluating a broad range of input values to
determine whether the direction and magnitude of model outputs
behave as would be expected.

Best practices

VII-4 Models should be subjected to rigorous verification. The methods
should be described in the model’s non−technical documentation. Per-
tinent results of verification should be made available on request.
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Cross-validation
This method (also called external consistency, comparative mod-
eling, external convergence testing, convergent validity, external
consistency, model corroboration) involves examining different
models that address the same problem and comparing their re-
sults [9,47–50]. The differences among the results and their causes
are then examined.

Strengths and limitations. Confidence in a result is increased if
similar results are calculated by models using different methods
[9,13]. Comparisons across models can also be useful for method-
ological purposes. The meaningfulness of this type of validation
depends on the degree to which the methods and data sources of
the different models are independent. A high degree of depen-
dency among models (e.g., using parameters from other models
published earlier) reduces the value of cross-validation. Alterna-
tive structures and assumptions, such as with the seven indepen-
dent Cancer Intervention and Surveillance Modeling Network
breast cancer models, enhances the credibility of the cross-valida-
tion [48].

Best practices

VII-5 Modelers should search for modeling analyses of the same or
similar problems and discuss insights gained from similarities and
differences in results.

External validation
External validation compares a model’s results with actual event
data. It involves simulating events that have occurred, such as
those in a clinical trial, and examining how well the results corre-
spond. For multiapplication models, external validations can be
applied to the model in a general sense and to each application.
They can also be applied to the model as a whole or to some com-
ponents. It is important to perform multiple validations that criss-
cross the intended applications in the sense of involving a range of
populations, interventions, outcomes, and time horizons. External
validation can also be applied to model components, such as pop-
ulation creation, disease incidence (including effects of patient
characteristics, risk factors, and behaviors), disease progression,
care processes and behaviors, occurrence of clinical outcomes,
and interventions and their effects (except for utilization and pro-
cedure outcomes, or financial costs—see limitations). Examples of
component validation include using an epidemiological study to
validate a model’s incidence equations and using biomarker pro-
gression in a trial’s control arm to validate physiologic equations.
In contrast, simulation of an entire clinical trial tests several, or all,
parts at once, and simulation of multiple trials tests the model’s
accuracy in calculating multiple outcomes in multiple populations
treated with multiple interventions.

External and predictive validation are critical as they most
closely correspond to the model’s purpose—to help decision mak-
ers anticipate what will occur if they take certain actions. There
are three main steps: identifying the data sources to simulate,
conducting the simulation, and comparing results.

Identifying the data sources. Data sources must fulfill two re-
quirements: 1) contain applicable data and 2) be sufficiently de-
scribed to enable replication of design (information about the set-
ting, population, treatment protocols, follow�up protocols, and
outcomes) and progression (any changes in the design or conduct
of the study over the follow�up period). Examples of data sources
include population statistics, epidemiologic studies, clinical trials,
claims data, and electronic health records.

Sources can be either formal or informal. A formal data source
is one intended for research purposes and includes explicit plan-
ning and description of study design, selection criteria, data gath-

ering and recording methods, intervention protocols, follow�up
protocols, outcome definitions, specified follow�up time, and
methods used to aggregate results and report outcomes. An infor-
mal data source is intended primarily for other purposes (e.g., clin-
ical records, claims data). The distinction is important because
simulating a source is difficult without explicit planning and de-
scriptions. Whether formal or informal, the quality of sources can
vary widely.

A validation is dependent if the same source was used both to
estimate model parameters and to validate the model. A valida-
tion is partially dependent if the source was used to build or cali-
brate part of a model but that part by itself does not wholly deter-
mine the outcome to be validated. Thus, a source can be
dependent for one part but “partially dependent” for another. A
validation is independent if no information from the source was
used to build the model. An independent validation is blinded if
those performing the validation had no information about the out-
comes in the source. For example, articles on the design and initial
conditions of a trial can be used to try to predict its results. Even
when a data source is unblinded, those conducting an indepen-
dent validation should not allow information about the outcomes
to influence the validation.

Calibration has been described as ensuring that the “inputs
and outputs are consistent with available data,” [13] which may be
dependent, partially dependent, or independent. A common form
of calibration involves constraining the possible values for unob-
servable model parameters by matching model output to external
data such as in cancer simulation [51]. Calibration reporting
should include the target, goodness-of-fit metric, search algo-
rithm, acceptance criteria, and stopping rule [51]. Thus, dependent
validations are closely related to calibration, where data are used
to fit model parameters.

Ideally, the validation plan and sources should be chosen be-
fore the results are known. Sources should be identified via a for-
mal search by using established methods [52–55], selecting those
that involve settings, populations, interventions, and outcomes
similar to those the model addresses, and with the best designs
(e.g., large size, representative population, formal protocol, de-
tailed reporting, and recent). The choices might be made by an
independent panel and should be justified and based on the in-
tended model use, not on convenience or the likelihood of a suc-
cessful validation outcome. Although it may be infeasible if the
data are needed to build the model, studies chosen for validations
should be independent. Models validated by partially dependent
and even dependent validations can still be useful, however. Mul-
tiapplication models should be validated against as many “land-
mark” studies (those used by experts as the basis for their under-
standing of the disease) as possible.

First, external validation usually requires multiple data
sources as a model will address various populations, interven-
tions, and outcomes. Second, populations and care processes vary
across settings and it is important to explore how well a model
simulates those. Third, it is important to validate the separate
model parts. For example, a model can overestimate incidence,
underestimate treatment effect, and still estimate mortality accu-
rately, implying falsely that it is wholly valid.

Simulating the sources. The simulation should use information
from the source such as population characteristics, treatment pro-
tocols, and outcome definitions. Data on intermediate outcomes
might be used if actual practice deviated from the intended design.
For example, if a trial’s design called for reducing low-density li-
poprotein cholesterol to 100 mg/dL but it increased to 145 mg/dL, it
would be appropriate to use that information. The simulation
setup should not be informed by the source health outcomes.

The simulation should be set up to match the source’s circum-
stances as closely as possible, including setting, target popula-
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tions, treatment and follow�up protocols, and outcome defini-
tions. A mismatch in any aspect can affect the interpretation of
the validation. For example, if a data source reports “myocardial
infarctions,” it is important to understand whether that includes
only hospitalizations or also includes sudden deaths and silent
infarctions. If the source includes all three but the model esti-
mates only hospitalizations, then the event rates should not be
expected to match. As a rule of thumb, if the investigators respon-
sible for a data source thought it was important to include an item,
modelers should try to include the same level of detail in the sim-
ulation. To the extent possible, variables in the model that control
behaviors should be set to match those in the source (e.g. treat-
ment cross�over). Modelers should identify aspects that cannot
be matched and discuss the implications for validation.

Parameters that define such things as the condition’s inci-
dence and natural history, effects of risk factors, physiology, oc-
currence of outcomes, and effects of treatments should not be
changed or “refitted” for each data source in order to achieve a
good match. The model structure can be modified during building,
but once a model is ready for external validation it should not be
modified further to fit a particular data source. Refitting could be
an indication that a different model structure might be more
appropriate.

Comparing outcomes. The comparison of simulation outcomes
with the actual source events should include the same statistical
methods used by source investigators. For example, if source re-
sults are presented as Kaplan-Meier curves, so too should the sim-
ulation’s results. If the source measures outcomes at various fol-
low�up times, the validation should include the same times.

Reporting should include a description of the data source, sim-
ulation setup (matching characteristics and follow-up and any
discrepancies), model and study uncertainty, and metrics used to
assess consistency of model and study results [56]. Any factors
known to affect outcomes but not described in the source or that
could not be simulated accurately should be reported, along with
how any discrepancies might affect the validation results.

The next task is to quantitatively explore how uncertainty and
discrepancies in actual versus simulated design affect the results,
and whether justifiable assumptions will diminish differences. If
the use of justifiable assumptions causes convergence, the mod-
el’s results can be called “consistent with” actual results. The re-
sults of these sensitivity analyses should be reported along with
the baseline analyses. The quantitative comparison of model re-
sults with actual ones will depend on the type of outcome. As it is
rarely possible to match a source exactly, even highly accurate
models might deviate and results should be interpreted cau-
tiously. For a summary measure, one can report the proportion of
results within any specified bound. Information about the source
and simulation sample size can be used to calculate whether a
measure is statistically significant.

For multiapplication models modified over time or when new
evidence becomes available, external validations need to be re-
done as an ongoing process.

Strengths and limitations. External validation tests the model’s
ability to calculate actual outcomes. This type of validation is used
throughout health care (e.g., confidence in CT scans is based on
comparisons of scans’ results with actual physical findings), and,
indeed, virtually every other scientific field.

External validation can address only the parts covered by data
sources. Even if a model accurately predicts a dozen clinical trials,
there is no guarantee that it will be accurate for the next trial.
Unless there happens to be a data source directly applicable to an
analysis, external validation cannot directly validate it. This very
rarely occurs; if such a source existed, the model would not be
needed. Another limitation is insufficient useful validation data.

The number of data sources may be limited. Data sources may
omit or be vague about some information needed to set up an
external validation properly. Even when the information on the
source’s design exists, it may not accurately represent what hap-
pened because of changes during the study. Even if protocols are
described perfectly and followed rigorously, factors that vary
across settings and affect outcomes may not be reported or may
not even be known. Person�specific data may be unavailable,
forcing the use of aggregated data or assumed distributions of
values. Accurate matching of aggregated results may not validate
results for subpopulations.

Although informal sources are attractive because they repre-
sent “real practice,” their use is especially problematic because
without a formal design, it is very difficult to determine what ac-
tually happened, given population turnover, practice pattern vari-
ations, selection biases, confounding, incomplete performance
and adherence, and staggered adoption of new interventions.
Many of these factors are not measured, and even when mea-
sured, they can be very difficult to simulate.

Another limitation is that the model might not include all ele-
ments needed to accurately simulate a source. It might not include
all risk factors or comorbidities, all patient, physician, hospital,
and health care system care processes or behaviors, or all features
needed to calculate outcomes precisely as defined in a source
protocol.

External validation is even more problematic for resource use
and costs. Because of practice pattern variations, resource use
triggered by clinical events differs across settings even when event
rates are similar. As unit costs can vary widely across settings,
costs are subject to similar problems.

Best practices

VII-6 There should be a formal process for conducting external valida-
tion that includes:

● Systematic identification of suitable data sources; justification of
the selection; specification of whether a data source is dependent,
partially dependent, or independent; description of which model
parts are evaluated by each source.

● Simulation of each source.

● Comparison of results, including descriptions of:

X Data source

X Simulation set.up

X Discrepancies between source and simulation, and their impli-
cations

X Discrepancies between simulation and observed results

X Sensitivity analyses

● Quantitative measures of how well the model’s results match the
source outcomes.

VII-7 Modelers should: make available on request a description of the
external validation process and results; identify model parts that can-
not be validated given lack of suitable sources; and describe how un-
certainty about those parts was addressed.

VII-8 For multi−application models, modelers should describe criteria
for determining when validations should be repeated and/or expanded.

Predictive validation
Predictive validation involves identifying an opportunity in which
a study design can be specified, simulating that design, recording
the predicted outcomes, waiting for events to unfold, and compar-
ing them with predictions [13,57]. This process is most easily en-
visioned for clinical trials that have published their designs but
not yet reported results, but can also be applied to cohort studies
still in progress.
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Strengths and limitations. Predictive validation is the most desir-
able type as it corresponds best to modeling’s purpose: predicting
what will happen. It also ensures a completely independent vali-
dation, allowing no opportunities for altering the model to fit ob-
served results. A limitation is that the results are necessarily in the
future and rarely in time to be helpful for immediate decisions.
They also require that there be a trial planned or in progress ap-
plicable to the decision at hand. Many models are built to synthe-
size the best available evidence and illuminate a policy decision
for which no trial is ongoing, planned, or even feasible. At best, this
validation method is applicable only for short�term outcomes
when research is feasible.

This method is also subject to all the limitations of external
validations; in particular, changes or breaches in design, and fac-
tors outside the control of the original study design such as the
introduction of new technologies or changes in care practices.
Thus, the best use of predictive validation is to simulate a clinical
trial or other suitable data source that was initiated in the past but
whose results are not yet known and will be announced in the near
future. This type of validation is most useful for multiple�use
models that are expected to be in service after the source’s results
are revealed.

Best practices

VII-9 When feasible with respect to the decision being addressed and a
future source’s availability, a model should be tested for its prediction
of future events. Builders of multiple−use models should seek opportu-
nities to conduct predictive validations.

Interpretation of validations
Ultimately, whether a model is sufficiently valid or accurate for a
particular application must be determined by those who would
use its results. The best practices described here are intended to
provide users with the information needed to determine how use-
ful a model and its results can be expected to be for their purposes.
We recommend that users of a model examine validation results
with four criteria:

● Rigor of the process;
● Quantity and quality of sources used;
● Model’s ability to simulate sources in appropriate detail; and
● How closely results match observed outcomes, initially and after

making justifiable assumptions about uncertain elements.

Conclusions

We have described methods and recommended best practices for
making models transparent and validating them. These principles
are essential for enabling readers and potential users to under-
stand how a model works and to judge its expected accuracy when
applied to particular problems. Not all models will be able to
achieve all these best practices, and inability to do so does not
necessarily imply a model is not useful. Modelers should strive,
however, to achieve these best practices. Beyond the limitations of
transparency and validation described above, it is important to
understand that models are only that; they are not reality. Models
are developed to help decision makers when the questions are too
complex for the human mind. Well-described and validated mod-
els can provide invaluable insights that cannot be obtained other-
wise.

Source of financial support: This Task Force was supported by
ISPOR.
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