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A B S T R A C T

A model’s purpose is to inform medical decisions and health care re-
source allocation. Modelers employ quantitative methods to structure
the clinical, epidemiological, and economic evidence base and gain
qualitative insight to assist decision makers in making better deci-
sions. From a policy perspective, the value of a model-based analysis
lies not simply in its ability to generate a precise point estimate for a
specific outcome but also in the systematic examination and respon-
sible reporting of uncertainty surrounding this outcome and the ulti-
mate decision being addressed. Different concepts relating to uncer-
tainty in decision modeling are explored. Stochastic (first-order)
uncertainty is distinguished from both parameter (second-order) un-
certainty and from heterogeneity, with structural uncertainty relating
to the model itself forming another level of uncertainty to consider.
The article argues that the estimation of point estimates and uncer-

tainty in parameters is part of a single process and explores the link
between parameter uncertainty through to decision uncertainty and
the relationship to value of information analysis. The article also
makes extensive recommendations around the reporting of uncer-
tainty, in terms of both deterministic sensitivity analysis techniques
and probabilistic methods. Expected value of perfect information is
argued to be the most appropriate presentational technique, alongside
cost-effectiveness acceptability curves, for representing decision un-
certainty from probabilistic analysis.
Keywords: best practices, heterogeneity, sensitivity analysis, uncer-
tainty analysis, value of information.
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Background to the Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the International Society for Pharmacoeconomics and
Outcomes Research Board of Directors in 2010, and the Society for
Medical Decision Making was invited to join the effort. The Task
Force cochairs and members are expert developers and experi-
enced model users from academia, industry, and government, with
representation from many countries. Several teleconferences and
hosted information sessions during scientific meetings of the Soci-
eties culminated in an in-person meeting of the Task Force as a
whole, held in Boston in March 2011. Draft recommendations were
discussed and subsequently edited and circulated to the Task Force
members in the form of a survey where each one was asked to
agree or disagree with each recommendation, and if the latter, to
provide the reasons. Each group received the results of the survey
and endeavored to address all issues. The final drafts of the articles
were available on the ISPOR and Society for Medical Decision Mak-

ing Web sites for general comment. A second group of experts was
invited to formally review the articles. The comments received
were addressed, and the final version of each article was prepared.
(A copy of the original draft article, as well as the reviewer com-
ments and author responses, is available at the ISPOR Web site:
http://www.ispor.org/workpaper/Model-Parameter-Estimation-and-
Uncertainty-Analysis.asp). A summary of these articles was pre-
sented at a plenary session at the ISPOR 16th Annual International
Meeting in Baltimore, MD, in May 2011, and again at the 33rd Annual
Meeting of the Society for Medical Decision Making in Chicago, IL, in
October 2011. These articles are jointly published in the Societies’ re-
spective journals, Value in Health and Medical Decision Making. Other
articles in this series [1–6] describe best practices for conceptualizing
models, building and applying particular types of models, and trans-
parency and validation. This article addresses best practices for pa-
rameter estimation and uncertainty analysis and is intended to apply
to all types of models. Examples are cited throughout, without imply-
ing endorsement or preeminence of the articles referenced.
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Introduction

This report adopts the Task Force’s view that a model’s purpose is to
inform medical decisions and health care resource allocation. Mod-
elers employ quantitative methods to structure the clinical, epidemi-
ological, and economic evidence base and gain qualitative insight to
assist decision makers in making better decisions. From a policy per-
spective, a model-based analysis’s value lies not simply in its ability
to generate a precise point estimate for a specific outcome but also in
the systematic examination and responsible reporting of uncertainty
surrounding this outcome and the ultimate decision being ad-
dressed. These are the hallmarks of good modeling practice.

The extent to which an uncertainty analysis can be considered
“fit for purpose” in part depends on the decision(s) the modeling
seeks to support. Uncertainty analysis can serve two main pur-
poses: assess confidence in a chosen course of action and ascer-
tain the value of collecting additional information to better inform
the decision.

Many models are designed to help decision makers maximize a
given outcome (e.g., cases identified in a screening model or qual-
ity-adjusted life-years in a cost-effectiveness model), subject, per-
haps, to one or more limiting constraints (such as a fixed budget).
The model generates point estimates of the outcome for each pos-
sible course of action; the “best” choice is the one that maximizes
the outcome subject to the constraint. If the decision maker has to
make a resource allocation decision now, has no role in commis-
sioning or mandating further research, and cannot delay the de-
cision or review it in the future, then the role of uncertainty anal-
ysis is limited and the decision should be based only on
expected values (although some commentators have argued
that for nonlinear models, probabilistic sensitivity analysis
(PSA) is required to generate appropriate expected values [7]).
Nevertheless, decision makers may want to gauge confidence in
the “best choice’s” appropriateness by exploring its robustness
to changes in the model’s inputs.

Increasingly, models are developed to guide decisions of par-
ticular bodies (e.g., organizations responsible for deciding whether
to reimburse a new pharmaceutical). Such decision makers who
have the authority to delay decisions or review them later, based
on research they commission or mandate, should be interested
not just in expected cost-effectiveness but also in a thorough un-
certainty analysis and the value of additional research. Such in-
formation, as well as assessments of factors such as the costs of
reversing a decision shown to be suboptimal as further informa-
tion emerges, and the cost of research and the likelihood of under-
taking it, can influence the array of decisions available. Thus, un-
certainty analysis conveys not only qualitative information about
the critical uncertainties surrounding a decision but also quanti-
tative information about the decision maker’s priorities in allocat-
ing resources to further research.

Many models are developed for general dissemination, with-
out a specific decision maker in mind. Such models could inform a
range of decision makers with varying responsibilities. Here, there
is a case for undertaking a full uncertainty analysis, thus allowing
different decision makers to take from the analysis what they re-
quire given the decisions with which they are charged.

Best practices

VI-1 The systematic examination and responsible reporting of uncer-
tainty are hallmarks of good modeling practice. All modeling studies
should include an uncertainty assessment as it pertains to the decision
problem being addressed.

VI-2 The decision-maker’s role should be considered when presenting
uncertainty analyses. The analytic perspective description should in-
clude an explicit statement regarding what is assumed about the deci-
sion-makers’ power to delay or review decisions and to commission or
mandate further research.

Background and Terminology

It is important to be precise concerning the terminology used in
this article, which is sometimes confused in the literature (reflect-
ing the multidisciplinary nature of decision modeling in health
care). In particular, stochastic (first-order) uncertainty is distin-
guished from both parameter (second-order) uncertainty and
from heterogeneity. Furthermore, each concept is argued to have
an analogous form within a “regression-type” model in statistics.
As in regression analysis, the structural uncertainty associated
with the model itself must also be considered. Table 1 summarizes
the concepts used here and preferred terminology, lists other
terms used, and provides the link to statistical regression.

The term “parameter uncertainty” is not the same as the un-
certainty around the realization of individual events or outcomes.
This “stochastic uncertainty” relates to the fact that individuals
facing the same probabilities and outcomes will experience the
effects of a disease or intervention differently, just as a fair coin
might come up heads or tails on any given toss (e.g., the first pa-
tient in a sample might respond to a treatment but the next may
not; the first may not experience an adverse effect but the second
may; the first may stay in hospital for 2 days and the second for 3
days). Parameter uncertainty (“second-order uncertainty”) relates
to the fact that the probabilities that govern outcomes are them-
selves uncertain, because they are estimated quantities (e.g., 100
tosses of a fair coin will not always lead to 50 realizations of
“heads” and fifty “tails”). Estimates of the probability of “heads”
based on 100 observations are uncertain. The sample size inform-
ing that estimate and variance in the data contribute to determin-
ing the parameter uncertainty. Parameter uncertainty also arises

Table 1 – Uncertainty for decision modeling: Concepts and terminology.

Preferred term Concept Other terms sometimes
employed

Analogous concept in
regression

Stochastic uncertainty Random variability in outcomes
between identical patients

Variability
Monte Carlo error
First-order uncertainty

Error term

Parameter uncertainty The uncertainty in estimation of the
parameter of interest

Second-order uncertainty Standard error of the estimate

Heterogeneity The variability between patients that
can be attributed to characteristics
of those patients

Variability
Observed or explained

heterogeneity

Beta coefficients (or the extent to
which the dependent variable
varies by patient
characteristics)

Structural uncertainty The assumptions inherent in the
decision model

Model uncertainty The form of the regression model
(e.g., linear, log-linear)
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from the existence of multiple, conflicting studies, problems with a
source study’s internal or external validity, generalizability from a
study to a real-world setting, and lack of empirical data. Although
these two types of uncertainty are clearly linked, uncertainty about
actual outcomes for individuals differs from uncertainty surround-
ing population parameter values (e.g., the response probability, ad-
verse event probability, or mean length of hospital stay). The distinc-
tion is analogous to the difference between standard deviation
(estimate of how individual observations within a sample vary) and
standard error (precision of an estimated quantity).

Parameter uncertainty may be represented via deterministic
sensitivity analysis (DSA) or via PSA. In a DSA, parameter values
are varied manually to test the sensitivity of the model’s results to
specific parameters or sets of parameters. In a PSA, (preferably) all
parameters are varied simultaneously, with multiple sets of pa-
rameter values being sampled from a priori defined probability
distributions. The outputs from a PSA may inform several differ-
ent forms of analysis, including confidence intervals, cost-effec-
tiveness planes (showing the distributions of costs and effects for
each evaluated technology or service), cost-effectiveness accept-
ability curves (showing the probability of cost-effectiveness for
each option), and value of information analyses. The latter in-
volves the estimation of the expected value of perfect information
(EVPI), which may be estimated for the model as a whole or for
specific parameters or sets of parameters (expected value of par-
tial perfect information).

Further adding to the confusion between first- and second-
order (parameter) uncertainty is the use of “variability” to refer to
the former but also to differences in parameter values across patients
or patient subgroups. “Heterogeneity” refers to the extent to which
between-patient variability can be explained by patients’ character-
istics (e.g., age- and sex-specific mortality). Its relevance lies in the
identification of subgroups for whom separate cost-effectiveness
analyses should be undertaken. Such analyses may inform alterna-
tive decisions regarding the service provision to each subgroup, or
contribute to a weighted analysis of the aggregate group.

An analogy is a simple regression model of the form:

Y � X� � �,

where an outcome variable Y depends on covariates X. The vector
of coefficients � represents the model parameters and is estimated
with uncertainty represented by the coefficients’ standard error
from the fitted regression. The extent to which the predicted val-
ues (Ŷ) vary with known covariates X represents heterogeneity
and the stochastic error term � represents unexplained variability,
which we call stochastic uncertainty.

Just as a linear regression imposes a structural relationship
between independent and dependent variables, so a decision-an-
alytic model is characterized by assumptions reflected in its struc-
ture but not formally expressed numerically (e.g., types of adverse
events included, duration of treatment effects, time dependency
of probabilities, and prognostic implications of surrogate end
points or clinical events). Although these structural assumptions
are not typically formally quantified, it is uncertain whether they
express reality accurately. As such, and analogously with statisti-
cal modeling, any representation of uncertainty in a decision
model is conditional on its structural assumptions. Therefore, in
principle, the structural characteristics are a further level of un-
certainty to be considered.

Although a model’s overall structure results from many as-
sumptions and analytic decisions, it is useful to distinguish two
broad categories of models that reflect both the underlying struc-
ture and relate to the uncertainty concepts outlined above. Pa-
tient-level stochastic simulations (e.g., discrete-event simulations
[3] and state-transition microsimulations [2]) are structured
around events occurring at the individual level and requiring sim-
ulation of numerous virtual patients. For these models, assess-

ment of parameter uncertainty requires elimination of stochastic
uncertainty (sometimes called Monte Carlo error). In cohort mod-
els, parameter uncertainty can be addressed without concern for
stochastic uncertainty.

Methodological uncertainty has been identified as a specific
type [8,9] that can be as important as parameter uncertainty [10].
In common with others [9,11], we think a “reference case” should
be applied. Nevertheless, disagreement about appropriate meth-
odology may be a reason to undertake sensitivity analysis.

Best practices

VI-3 Terminology to describe concepts relating to parameter estimation
and representation of uncertainty varies within the health-care deci-
sion-modeling field and in comparison to related fields. Authors should
be aware of this and seek to carefully define their use of terminology to
avoid potential confusion.

Parameter Estimation and Uncertainty Analysis

All models have parameters that must be estimated. In doing so,
analysts should conform to evidence-based medicine principles
(e.g., seek to incorporate all evidence, rather than selectively pick-
ing a single source; use best-practice methods to avoid potential
biases, as when estimating treatment effectiveness from observa-
tional sources; employ formal evidence synthesis techniques
[12,16]). Uncertainty analysis is equally integral: the steps taken to
estimate a parameter link directly with those necessary to conduct
uncertainty analysis. Standard statistical methods for estimation
generate a point estimate together with some measure of precision
such as standard errors or 95% confidence intervals. This is true
whether these methods are implemented within a uni- or multivari-
able framework, although the latter will also provide a measure of
covariance between estimated parameters. Consequently, whether
primary data sources are used to estimate input parameters or infor-
mation derives from one or more secondary source, the estimation
generates a point estimate, a measure of precision, and, potentially,
one of covariance. These types of information from estimation
should feed directly into the uncertainty analysis.

This is true whatever the uncertainty analysis’s technical spec-
ification. For a one-way DSA, it is necessary to specify the param-
eter’s point estimate and a defensible range; these may be taken
directly from the estimation process, with the latter based, for
example, on a 95% confidence interval. A two-way uncertainty
analysis will be more useful if informed by the covariance between
the two parameters of interest, or on the logical relationship be-
tween them (e.g., a two-way uncertainty analysis might be repre-
sented by the control intervention event rate and the hazard ratio
with the new treatment).

Representation of uncertainty depends on the uncertainty
analysis planned. For DSA, an interval estimate representing be-
liefs about the parameter’s plausible range is required. For PSA, a
distribution is specified via its parameters.

Best practices

VI-4 All decision models have parameters that need to be estimated.
Populating models with parameter estimates should conform to evi-
dence-based medicine principles.

Consistency of approach between deterministic and
probabilistic uncertainty analysis

Uncertainty estimates for parameters estimated (or estimable)
from data should be consistent with standard statistical ap-
proaches. The underlying distributional assumption used to cal-
culate the 95% confidence interval can be the basis for an uncer-
tainty analysis distributional assumption. One exception is when
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taking a formal Bayesian approach involving subjective prior in-
formation, where the standard distributional assumption relates
to the data likelihood combined with the prior information to form
the posterior density. In this case, consistency between DSA and
the fully Bayesian probabilistic approach would be retained if the
DSA interval estimate were based on the Bayesian posterior’s 95%
highest density region [13].

Some uncertainty analyses do not require formal ascertain-
ment of parameter uncertainty. These include threshold analysis,
where the parameter’s value needed to change the decision is
identified. This is closely linked to “even if” approaches that iden-
tify extreme parameter values that still do not change the deci-
sion—with the implication that these parameters are unlikely to
influence the decision. Such analyses may be sufficient if there is
little decision uncertainty given reasonable assumptions about
parameter uncertainty. Another form not requiring uncertainty
estimation is identification of the quantitative relationships be-
tween inputs and outputs (e.g., it might be determined that a 10%
increase in a particular parameter’s value leads to a 20% increase
in expected effectiveness and a 5% decrease in expected cost). This
sort of analysis is unlikely to be sufficient since a parameter with
low sensitivity, but highly uncertain, could easily have more im-
pact on the model outputs than a more sensitive parameter but
estimated more precisely. Therefore, completely arbitrary analy-
ses, such as the effect on outputs of varying each input by �50%,
are not recommended as a representation of uncertainty.

Best practices

VI-5 Whether employing deterministic methods (point estimate and
range) or probabilistic (parameterized distribution), the link to the un-
derlying evidence base should be clear.

VI-6 While completely arbitrary analyses, like presentation of the effect
on outputs of varying inputs by ±50%, can be used as a measure of
sensitivity; such analyses should not be used to represent uncertainty.

Estimation and choice of distribution for PSA and interval
estimation

If there is much information available to inform a parameter’s
estimate, then by the central limit theorem—the sampling distri-
bution of the arithmetic mean will follow a normal distribution
(with sufficient sample size), whatever the data’s underlying dis-
tribution—the normal distribution can be used in a PSA and a
standard confidence interval in a DSA. Consistency between each
form of uncertainty estimate is maintained since the arithmetic
mean and standard error inform both the parameters of the dis-
tribution and the confidence interval calculation. Nevertheless,
the reality of multiple data sources suggests that reliance on a
single study is likely to underestimate uncertainty. This suggests a
broader uncertainty analysis than based on study data alone, leaving
open some subjective assessment for ensuring appropriate repre-
sentation of uncertainty, even where single large studies are avail-
able for estimating parameters and their associated uncertainty.

The general principle remains that assumptions for specifying
the distribution and/or defining the interval for uncertainty anal-
ysis should follow standard statistical methods (e.g., beta distribu-
tions are a natural match for binomial data; gamma or log normal
for right skew parameters; log normal for relative risks or hazard
ratios; logistic for odds ratios [14]). These distributions can be used
directly in PSA or to define the interval (plausible range) for a DSA.

Sometimes there is very little information on a parameter, be-
cause either there are very few studies informing the estimation or
there are no data and expert opinion must be relied upon. Here, it
is imperative that uncertainty related to such estimates be fully
explored. A conservative approach should be adopted with an ap-
propriately broad range of possible estimates elicited from each

expert, reflected in how opinions are combined across experts and
incorporated into the uncertainty analysis. On no account should
parameters be excluded from an uncertainty analysis on the
grounds that “there is not enough information to estimate uncer-
tainty.” Continuous distributions providing a realistic portrayal of
uncertainty over the parameter’s theoretical range should be fa-
vored in PSA. Hence, careful consideration should be given to
whether convenient-to-fit, but implausible, distributions (e.g.,
uniform or triangular) should have any role in PSA. Formal meth-
ods for eliciting probability distributions from experts have been
developed [15].

Best practices

VI-7 Use commonly adopted statistical standards for point and inter-
val estimation (e.g., 95% confidence intervals, or distributions based on
agreed statistical methods for a given estimation problem). Where
departures from these standards are deemed necessary (or no such
standard exists), these should be justified.

VI-8 Where there is very little information on a parameter; adopts a
conservative approach such that the absence of evidence is reflected in
a very broad range of possible estimates. Never exclude parameters
from uncertainty analysis on the grounds that there insufficient infor-
mation to estimate uncertainty.

VI-9 Favor continuous distributions that portray uncertainty realisti-
cally over the theoretical range of the parameter. Careful consideration
should be given to whether convenient-to-fit but implausible distribu-
tions (such as the Triangular) should have a role in PSA.

Multivariate estimation and correlation

When regression is used to capture the effect of subject character-
istics on parameter estimates, the dependent variable is a func-
tional parameter of the regression coefficients. Therefore, uncer-
tainty in the functional parameter can be defined in terms of
uncertainty (and correlation) in the coefficients. The covariance
matrix defines these uncertainties, and the assumption of multi-
variate normality is appropriate for the regression’s linear predic-
tor. These can be used to specify the interval for DSA or as the basis
for PSA [14].

In PSA, parameters are typically not all independent of one
another. For example, if two uncertain parameters are disease
progression probabilities with and without treatment, part of the
uncertainty may derive from doubts regarding the disease’s natu-
ral history and part from imprecise measurement of treatment
efficacy. The component related to natural history would affect
the progression probabilities with or without treatment, whereas
the component related to efficacy would affect the relationship
(e.g., relative risk) between progression probabilities with and
without treatment. It would be wrong to regard the progression
probabilities as coming from independent distributions and con-
duct the PSA accordingly. It might be reasonable, however, to re-
gard the natural history progression probability and the risk re-
duction with treatment as independent. Parameter distributions
in this situation should be defined in a way that makes it plausible
that they are independent. In this example, the baseline progres-
sion probability and the relative risk reduction would be assigned
distributions in the PSA, with the on-treatment progression prob-
ability derived as their product. Where this application of relative
risks can result in “out-of-range” parameters, consider switching
to odds ratios. While this method of defining parameters in a way
that induces mutual independence offers a practical and sufficient
approach in many situations, more sophisticated methods that
explicitly quantify joint distributions of correlated parameters
may also be considered [14].
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Best practices

VI-10 Correlation among parameters should be considered. Jointly es-
timated parameters, such as those from a regression analysis, will
have direct evidence on correlation which should be reflected in the
analysis. Independently estimated parameters will have no such evi-
dence, but this should not necessarily lead to an assumption of inde-
pendence. Possible approaches are to include a correlation coefficient as
a parameter where concern exists that an unknown correlation could
be important; or to re-parameterize the model so that that the uncer-
tain parameters can be reasonably assumed to be independent.

Calibration Methods and Structural Uncertainty

There is emerging interest in calibration methods that combine
knowledge over parameter inputs, structure, and outputs (or cal-
ibration targets) to assist in ensuring consistency of inputs and
outputs. Common calibration targets include overall and disease-
specific mortality and event incidence rates.

Bayesian (or multiparameter) evidence synthesis is a calibra-
tion approach developed in health technology assessment by us-
ing Markov chain Monte Carlo via freely available WinBUGS soft-
ware [16]. This approach involves specification of a structure
comprising inputs and parameters that are functions of multiple
inputs, for which an external data source exists [17]. The Markov
chain Monte Carlo estimates a joint set of posterior distributions
for the input parameters, based on the functional parameters’
likelihood. Most applied examples of this approach have involved
relatively simple structures. For more complex models, standard
calibration approaches can be applied to identify the best fitting
set of inputs, or multiple sets of values, which can then form the
basis for uncertainty analysis [18–21]. Steps in calibration include
identifying calibration targets, selecting individual and aggregated
measures of goodness of fit, defining the parameter space, select-
ing a search strategy, defining convergence thresholds, and spec-
ifying a stopping rule [22].

The use of calibration to estimate parameters or adjust esti-
mated values emphasizes the important role model structure
plays in defining the relationship between inputs and outputs.
Structural uncertainty is frequently ignored though it may have a
much greater impact on results than parameter uncertainty [10].
Recent approaches to this issue have sought to parameterize
structural uncertainties into the model [23–25]. This is trivial for
nested structures (e.g., a constant hazard function could be re-
placed by a more flexible function) but is much more challenging
for nonnested structures, which could require complete redesign/
rebuilding of the model. While it may be feasible to internalize
structural uncertainty by adding parameters to the model, any
given research team will be limited in the extent to which it can
fully incorporate this form of uncertainty. In such situations, an-
alysts are encouraged to be as explicit as possible regarding the
structural assumptions that might have an impact on the findings
and suggest alternative assumptions that future modeling exer-
cises might employ.

Best practices

VI-11 Where uncertainties in structural assumptions were identified in
the process of conceptualizing and building a model, those should be
tested in uncertainty analysis. Consideration should be given to oppor-
tunities to parameterize these uncertainties for ease of testing. Where
it is impossible to perform structural uncertainty analysis, it is impor-
tant to be aware that this uncertainty may be at least as important as
parameter uncertainty.

Reporting Uncertainty Analyses

Often, it is appropriate to report aspects of both DSA and PSA (e.g.,
may report deterministic threshold analysis for key parameters
and PSA to convey overall uncertainty). The guiding principle is
that the reporting method should be tailored to guide the decision
at issue.

When additional assumptions or parameter values are intro-
duced for purposes of uncertainty analysis (e.g., distribution pa-
rameters for PSA, parameter ranges for DSA), these should be dis-
closed and justified. Technical appendices are often appropriate
for this purpose. When calibration is used to derive parameters,
uncertainty around the calibrated values should be reported, and
this uncertainty should be reflected in DSA, PSA, or both.

Reporting deterministic sensitivity analysis

Many methods may be used to convey how results depend on
individual parameters, multiple parameters jointly, or model
structure. One-way DSA may be reported by using a “tornado dia-
gram” (Fig. 1). The horizontal axis is the outcome; along the verti-
cal, parameters are arrayed, and horizontal bars represent the out-
come range associated with the specified each parameter’s range.
The outcome point estimate corresponding to base-case values is
indicated by a vertical line cutting through all horizontal bars.
Commonly, the longest bar (reflecting the parameter generating
the widest uncertainty) is placed at the top and the other bars are
arrayed in descending order of length. A tornado diagram should
be accompanied by a legend or table indicating the upper and
lower bounds of values for each parameter, with their justification
in terms of the evidence base. A table may be used instead of a
tornado diagram or the results ranges provided in the text of the
report (e.g., the text might state that “the outcome ranged from X
to Y when parameter Z was varied from A to B”). It is important
that the range A to B represent a defensible range for parameter Z,
not an arbitrary one.

Often, uncertainty in a parameter may be represented by sev-
eral discrete values, instead of a continuous range, sometimes
called “scenario analyses” (e.g., evidence from clinical studies,
utility surveys, or cost data sets may lead to different values). It is
acceptable to report alternative outcomes under each of these dis-
crete assumptions to complement other uncertainty analysis.

Structural uncertainty may be represented deterministically
by reporting results under each set of structural assumptions.
Quantitative uncertainty analysis may be embedded within struc-
tural uncertainty analysis by reporting them separately under
each structural assumption.

In presenting one-way uncertainty analysis, reporting negative
incremental cost-effectiveness ratios (ICERs) should be avoided as

Fig. 1 – Tornado diagram showing the impact of
uncertainty on the outcome of a decision model.
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they are meaningless [26,27]. Instead, the ICER range should be
limited to results corresponding to positive incremental health
consequences and costs—quadrant I in the cost-effectiveness
plane. Results for which incremental costs are positive and health
consequences negative should be indicated qualitatively as “dom-
inated” and those with negative incremental costs and positive
health consequences as “dominant.” ICERs corresponding to neg-
ative incremental costs and health consequences—quadrant III—
should be distinguished from ICERs in quadrant I.

Results of one-way threshold analyses are easily reported in
text (e.g., “The ICER remains less than Y as long as the value of X is
greater than A,” or “Alternative 1 dominates 2 if the value of Z is
less than B”). Results of two-way and multiway uncertainty anal-
ysis require graphical or tabular displays (Fig. 2). The axes repre-
sent possible values, and the quadrant is partitioned into regions
corresponding to various ICERs, the boundaries representing spec-
ified ICER thresholds, or thresholds of dominance. As in one-way
analyses, it is important to specify which alternative dominates
and which comparator is more effective and costly when an ICER
threshold is indicated. Three-way threshold analyses may be su-
perimposed on two-way graphs by overlaying threshold curves
(Fig. 3), but this often leads to visual overload and confusion and
will work only if the third parameter can be represented as taking
on discrete values.

Threshold analyses are especially useful, perhaps necessary,
when reporting DSA involving three or more comparators. In
those situations, the relevant question may be “Which alterna-
tive is cost-effective at a threshold of X?” To portray the answer

for two parameters, partition the quadrant to show which
alternative is cost-effective at various ICER thresholds and for
different combinations of parameters (Figs. 4a and b). Results
for different decision criteria (e.g. ICER thresholds, or domi-
nance) are best presented in separate panels of a graphical
display.

When the base-case result of an analysis strongly favors one
alternative, a threshold analysis may be presented as a worst-case
or “even if” analysis (e.g., “Even if the risk reduction is as low as X,
the ICER remains below Y” or “Even if the relative risk reduction
with alternative A is as low as X and the cost of treatment is as high
as Y, alternative A dominates B.”) Threshold values can easily be
combined with the tornado presentation by marking them on the
horizontal bars.

Reporting probabilistic sensitivity analysis (PSA)

When reporting a PSA, the specific distribution (e.g., beta, normal,
lognormal) as well as its parameters should be disclosed. Some-
times, it is feasible to incorporate this information into the table
listing model parameters. If not, a table detailing the distributions
may be included in a technical appendix. Justification for the dis-
tributions chosen should be provided. This may be directly from
empiric data, a full Bayesian evidence synthesis, or subjective. As
personal judgments need not correspond to the decision makers’
perceptions, alternative specifications and parameters should be
provided so that users can select the distributions most closely
reflecting their own judgments. A rule of reason applies in this
regard: parameters that exert little leverage on the overall uncer-
tainty can be left as subjective.

Fig 2 – Two-way threshold analysis.

Fig. 3 – Three-way threshold analysis.

Fig. 4 – Two-way threshold graph with 3 or more comparators. (A) Two-way SA for 3 treatments at $50,000 WTP for a
QALY. (B) Two-way SA for 3 treatments at $100,000 WTP for a QALY.
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Perhaps the best measure of uncertainty surrounding a partic-
ular decision in cost-effectiveness analysis is the EVPI, since this
measure combines the probability of incorrect decision making
with the consequential loss function [28]. The higher the EVPI, the
larger the opportunity cost of an incorrect decision viewed at the
point at which the uncertain decision is being made (i.e., the more
costly is the uncertainty). Total EVPI is commonly reported in
monetary terms, using net monetary benefit (an alternative is to
express EVPI by using net health benefit.) Since both net monetary
benefit and net health benefit depend on the ICER threshold, EVPI
should be reported for specified ICER threshold(s), or in graphical
form as a function of ICER thresholds (Fig. 5).

Expected value of partial perfect information can be estimated
to identify key parameters and should be reported as for EVPI.
Because of the likely correlation between individual parameters in
expected value of partial perfect information, it may be preferable
to report values for groups of parameters, which might also be the
focus of future research effort [29,30]. Expected value of sample
information analyses [31] should be reported similarly, but with

the additional proviso that the factors governing the assumed
study from which sample information is obtained (e.g., sample
size, individual-level or patient-level variation in outcomes) must
also be specified.

When a PSA is performed without an accompanying value-of-
information analysis, options for presenting results include cost-ef-
fectiveness acceptability curves and distributions of net monetary
benefit or net health benefit. When more than two interventions are
involved, cost-effectiveness acceptability curves for each should be
plotted on the same graph (Fig. 6), with or without the inclusion of a
cost-effectiveness acceptability frontier.

Reporting uncertainty owing to calibrated parameters

When model calibration is used to estimate parameters not di-
rectly observable from data, uncertainty owing to the calibration
process should be reported. As for other model parameters, such
reporting may be either deterministic or probabilistic. Determin-
istic reporting involves presentation of the range of calibrated in-
put parameter values across the convergent parameter sets and
the resulting range of outputs (e.g., ICERs). The results may be
reported as discrete point estimates or as a range.

Probabilistic calibration-related uncertainty can be reported in
many ways. If a formal Bayesian approach to calibration is used, then
the posterior distributions of the calibrated parameters should be
reported. If a less formal approach to calibration is used, then a dis-
crete joint distribution of parameter estimates can be generated on
the basis of all convergent input parameter sets. The discrete distri-
bution may assign equal probability to each resulting parameter
value set, or probability weights may be applied that reflect the rela-
tive goodness of fit of the component parameter sets.

Analogous to the reporting of structural uncertainty, the results
of separate calibration analyses using alternative methodological ap-
proaches should be reported under each discrete calibration process.
Alternative approaches may include the objective function used for
evaluating goodness of fit, the computational process or algorithm
used to identify convergent parameter sets, and the importance
weights attached to different calibration targets.

Fig. 5 – EVPI as a function of the cost-per-QALY threshold.
EVPI, expected value of perfect information; QALY, quality
adjusted life-year; WTP, willingness to pay.

Fig. 6 – CEACs with three or more treatment strategies. CEACs, cost-effectiveness acceptability curves; EVPI, expected value
of perfect information; QALY, quality adjusted life-year; WTP, willingness to pay.
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Best practices

VI-12 It is appropriate to report both deterministic and probabilistic
uncertainty analyses within a single evaluation. Tornado diagrams,
threshold plots, or simple statements of threshold parameter values,
are all appropriate ways of reporting results from deterministic sensi-
tivity analyses.

VI-13 When additional assumptions or parameter values are intro-
duced for purposes of uncertainty analyses; these values should be
disclosed and justified.

VI-14 When model calibration is used to derive parameters; uncertainty
around the calibrated values should be reported and reflected in determin-
istic or probabilistic sensitivity analyses, or both.

VI-15 When the purpose of a probabilistic sensitivity analysis is to
guide decisions about acquisition of information to reduce uncertainty;
results should be presented in terms of expected value of information.

VI-16 For economic studies, when a probabilistic SA is performed with-
out an accompanying expected value of information analysis, options
for presenting results include cost-effectiveness acceptability curves
and distributions of net monetary benefit or net health benefit. When
more than two comparators are involved, curves for each comparator
should be plotted on the same graph.

Source of financial support: The authors have no other finan-
cial relationships to disclose.
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