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A B S T R A C T

The transmissible nature of communicable diseases is what sets them
apart from other diseases modeled by health economists. The proba-
bility of a susceptible individual becoming infected at any one point in
time (the force of infection) is related to the number of infectious indi-
viduals in the population, will change over time, and will feed back into
the future force of infection. These nonlinear interactions produce
transmission dynamics that require specific consideration when mod-

eling an intervention that has an impact on the transmission of a
pathogen. Best practices for designing and building these models are
set out in this article.
Keywords: dynamic transmission, best practices, infectious disease,
modeling.
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Introduction

The transmissible nature of communicable diseases is the critical
characteristic that sets them apart from other diseases modeled
by health economists [7,8]. If an intervention reduces cases in the

community, then the risk to others goes down. Reduce them
enough, and the infection will be eliminated and will not return
unless reintroduced. Even then, it will not be able to spread unless
there are sufficient susceptible individuals. Maintaining vaccina-
tion—which reduces susceptibility—at sufficiently high coverage
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Background to The Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the ISPOR Board of Directors in 2010, and the Society
for Medical Decision Making was invited to join the effort. The
Task Force cochairs and members are expert developers and ex-
perienced model users from academia, industry, and govern-
ment, with representation from many countries. Several tele-
conferences and hosted information sessions during scientific
meetings of the Societies culminated in an in-person meeting of
the Task Force as a whole, held in Boston in March 2011. Draft
recommendations were discussed and subsequently edited and
circulated to the Task Force members in the form of a survey
where each one was asked to agree or disagree with each recom-
mendation, and if the latter, to provide the reasons. Each group
received the results of the survey and endeavored to address all
issues. The final drafts of the seven articles were available on the
ISPOR and Society for Medical Decision Making Web sites for

general comment. A second group of experts was invited to for-
mally review the articles. The comments received were ad-
dressed, and the final version of each article was prepared. (A
copy of the original draft article, as well as the reviewer com-
ments and author responses, is available at the ISPOR Web site:
http://www.ispor.org/workpaper/Dynamic-Transmission-
Modeling.asp.) A summary of these articles was presented at a ple-
nary session at the ISPOR 16th Annual International Meeting in
Baltimore, MD, in May 2011, and again at the 33rd Annual Meeting
of the Society for Medical Decision Making in Chicago, IL, in October
2011. These articles are jointly published in the Societies’ respective
journals, Value in Health and Medical Decision Making. Other articles
in this series [1–6] describe best practices for conceptualizing mod-
els, building and applying other types of models, and addressing
uncertainty, transparency, and validations. This article addresses
best practices for dynamic transmission models. Examples are
cited throughout, without implying endorsement or preeminence
of the articles referenced.
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(though crucially not necessarily 100%) can permanently prevent
infection from spreading [7]. Thus, there are population-level ef-
fects in addition to those accruing to individuals and caregivers
reached by the program. This is not so for noncommunicable dis-
eases. For example, reducing the prevalence of heart disease
makes no difference to the heart disease risk in others. If every
case is treated, new cases still arise, and the overall health benefits
can be estimated by summing the individual benefits. Many com-
monly used decision-analytic models, such as Markov models, ig-
nore the indirect effects that arise from averted infections,
whereas dynamic transmission models provide a tool to model
such externalities.

This difference is fundamental and yet often overlooked by
analysts. In a recent review of cost-effectiveness studies of vacci-
nation programs, only 11% of 208 studies used an approach that
could incorporate these indirect (as well as direct) effects [9]. Oth-
ers have reported similar findings for other interventions against
communicable diseases, including mass screening and treatment
programs for chlamydia [10]. Most analysts have simply adapted
the same class of model used for noncommunicable diseases, ig-
noring this fundamental property of communicable disease con-
trol programs. Hence, comparison across economic analyses is
more difficult because results may be very sensitive to the under-
lying model structure. Clearly then, there is a need for specific
guidance in this field.

What is a Dynamic Transmission Model?

Dynamic transmission models (often shortened to “dynamic”
models) are capable of reproducing the direct and indirect effects
that may arise from a communicable disease control program.
They differ from other (static) models that assume a constant risk
of infection (sometimes referred to as the “force of infection”): it is
a function of the number of infectious individuals (or infectious
particles, such as intestinal worm eggs) in the population (or en-
vironment) at a given point in time [11]. If an intervention reduces
this pool of infectiousness, then the risk to uninfected susceptible
individuals will decrease. That is, individuals not reached by the
program can still benefit by experiencing a lower infection risk.
The models used can be deterministic or stochastic; individual or
cohort-based; include economic and health outcomes or be stand-
alone epidemiological analyses; be simple explorations of the sys-
tem or be very detailed with many parameters. All share the same
distinguishing feature—that the infection risk is dependent on the
number of infectious agents at a given point in time. These dy-
namic aspects will be the focus of these best practices.

Basic reproduction number

The basic reproduction number (R0) is a fundamental metric in
infectious disease epidemiology [11,12]. It is the average number of
secondary infections generated by a typical case in a fully suscep-
tible population. A closely allied metric is the effective reproduc-
tion number, Re(t), which does not specify that the whole popula-
tion must be susceptible, defined as R0 multiplied by the
susceptible fraction of the population s(t) [11,12]. The reproduction
number gives a measure of the disease’s ability to spread in a
population. A value of 1 gives a threshold for invasion of a patho-
gen into a population.

Malaria, for instance, now has an R0 below 1 in northern Eu-
rope, and although most Northern Europeans are susceptible, and
cases are regularly introduced via travel from endemic areas, ma-
laria epidemics do not occur [13,14]. By contrast, severe acute re-
spiratory syndrome had an R0 of approximately 3 (in health care
settings), and everyone was susceptible. That is, each case gener-
ated on average three other cases, and each of these would be
expected to generate an average of three further cases, and so on,

leading to an exponentially increasing epidemic [15]. The basic
reproduction number also gives an indication of the ease of con-
trolling an infection. It is obvious that there is no need for further
control measures for malaria in northern Europe. Severe acute
respiratory syndrome, on the other hand, required stringent con-
trol measures for a large epidemic to be averted.

Natural immunity is another unique feature of infectious dis-
eases (although not all infections stimulate immunity) and is the
principal reason for the depletion of susceptible individuals, lead-
ing to an epidemic slowing down and eventually declining. Dy-
namic transmission models typically capture this by allowing in-
dividuals who recover from infection to transition into a recovered
state in which they are immune to further infection. The rate at
which natural immunity is lost, returning individuals to a suscep-
tible state, is one factor that influences a pathogen’s ability to
remain endemic in a population.

When is a Dynamic Approach Appropriate?

Dynamic models are important in two circumstances: 1) when an
intervention impacts a pathogen’s ecology, for example, by apply-
ing selection pressure resulting in “strain replacement” [16,17],
and 2) when the intervention impacts disease transmission [7,8]. A
static model is acceptable if target groups eligible for intervention
are not epidemiologically important (e.g., evaluation of hepatitis A
vaccination in travelers from low- to high-incidence countries), or
when effects of immunizing a given group are expected to be al-
most entirely direct (e.g., vaccination of the elderly against influ-
enza or pneumococcal disease). Static models are also acceptable
when their projections suggest that an intervention is cost-effec-
tive, and dynamic effects would further enhance this (e.g., via pre-
vention of secondary cases). Adopting such an approach, which
undervalues an intervention, can lead to poor public health deci-
sion making if policymakers use such estimates to decide on the
optimum allocation of a limited health care budget.

Reduced transmission does not always result in net health and
economic gains; in particular, increasing age at infection may be
associated with reduced health due to the changing spectrum of
illness in older individuals [18]. Also, replacement effects have
been reported, for example, in pneumococcal disease, that may
limit health gains due to other subtypes of bacteria “substituting”
those removed by vaccination. Where static models project inter-
ventions to be unattractive or borderlineattractive (i.e., close to
willingness-to-pay thresholds), supplementary dynamic model-
ing should be undertaken to evaluate whether the inclusion of
indirect herd immunity effects, replacement, and age shifts alter
the projected cost-effectiveness. Although indirect effects can be
incorporated by using a static framework (e.g., European countries
did so by using US data [19,20] in evaluating the economic attrac-
tiveness of pneumococcal conjugate vaccines in children), the
danger is that the level of indirect protection may be very different
in another setting (e.g., different coverage levels). Flowcharts de-
veloped by the World Health Organization for the evaluation of
immunization programs can be helpful in guiding the decision
about dynamic versus static models [21].

Indirect effects of intervention programs

The best-known example of economically important indirect ef-
fects is herd immunity with large-scale vaccination programs.
When coverage exceeds a critical threshold (Vc), disease is elimi-
nated, as too few susceptible persons remain to ensure transmis-
sion. Infectious individuals will (on average) cause less than one
new infection before recovering, as most contacts will be with
immune individuals. As an epidemic does not occur, unvaccinated
individuals experience a low infection risk. In a homogeneously
mixing population (one in which all individual are equally likely to
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have contact with all other individuals and there are no prefer-
ences), for herd immunity to occur, Vc has to be greater than 1 �

1/R0 [11,12]. Successful eradication of smallpox and elimination of
many childhood infections from countries with high infant vacci-
nation coverage have provided “proof of concept” for this relation-
ship.

Indirect effects can also be observed for other large-scale pop-
ulation-based programs against communicable diseases, such as
screening (e.g., population-based screening for chlamydia has ef-
fects in age and gender groups not screened [22,23]). Not taking
these into account may lead to overly pessimistic cost-effective-
ness ratios. Indirect effects may also mean that the group opti-
mally targeted is not the one that experiences the greatest disease
burden but that which contributes most to the force of infection
(e.g., dynamic models, but not static models, may show that im-
munizing younger individuals is the best means of preventing in-
fluenza-related mortality in older individuals [24]). Similarly, dy-
namic models may identify groups at less risk of sequelae as the
best targets for chlamydia screening programs [22,23].

Indirect effects are not always beneficial, even if they decrease
infection in the population. Reducing infection risk in susceptible
individuals increases the average age at which they become in-
fected [11,12], and for many diseases, this increases complication
risk and mortality (e.g., hepatitis A and varicella [25,26]). Older age
at infection may also result in a higher likelihood of infection dur-
ing pregnancy, with potentially devastating complications for
newborns [27]; (e.g., several countries have seen paradoxical in-
creases in congenital rubella resulting from partial coverage with
rubella vaccine, with concomitant increase in age at first infection
[28,29]). Complex relationships may also exist between disease
incidence, latent infections, and immunity in older individuals for
such infections as varicella; here, vaccine programs that result in
less “boosting” as a result of childhood infections may lead to
surges in reactivated infection (“shingles”) in older individuals
[30,31]. Reduced force of infection may also result in more widely
spaced epidemics, which may itself have economic value, espe-
cially when future health costs and effects are discounted [12].
Such spacing may also complicate capacity planning. None of
these phenomena is readily captured via static models. In such
circumstances, dynamic models are essential.

Best Practices

V-1 A dynamic model is needed when evaluating an intervention
against an infectious disease that 1) has an impact on disease trans-
mission in the target population or 2) alters the frequency distribution
of strains (e.g., genotypes or serotypes).

Static models can be used if the intervention is unlikely to
change the force of infection (which could occur if either the tar-
geted population or the intervention effect is very small) or to
estimate the worst-case scenario when herd immunity or age
shifts cannot produce negative effects. Static models cannot ade-
quately take into account herd immunity or age distribution shifts.
Risk of infection in susceptible individuals is constant in static
models, while in dynamic models, it is a function of the proportion
of the population infected (which changes over time). Hence,
when intervention uptake is very low (e.g., low vaccine coverage)
or is targeted at groups that do not have an impact on overall
transmission, or does not prevent circulation of the pathogen,
static and dynamic models produce similar results [7,32].

Dynamic models should be used if an intervention is likely to
change the force of infection by decreasing the proportion suscep-
tible (e.g., mass vaccination), contact rates between individuals
(e.g., closing schools during a pandemic), the duration of infec-
tiousness (e.g., antivirals), or the probability of transmission per
act (e.g., antiretrovirals). Some changes in the force of infection
may also be caused by changing risk behaviors in the population

when perceiving a higher risk during an outbreak. By taking into
account these changes, dynamic models can 1) produce nonlinear
dynamics, 2) predict higher number of cases prevented, and 3)
predict changes in morbidity and mortality due to age shifts. Type-
specific dynamic transmission models are necessary when inter-
ventions can induce selective pressures that cause a subset of
pathogen types, or even other microbes, to gain a competitive ad-
vantage [16,33] (e.g., type replacement following vaccination
[16,34,35] and antimicrobial resistance [33,36]). Dynamic models
must be used when decision makers are interested in local elimi-
nation of an infectious disease, or eradication (i.e., global elimina-
tion) [32]. This is possible only, without reaching everyone, with
nonlinear (herd) effects. Finally, if reinfection of treated individu-
als depends on the prevalence of the infection in the population,
as is the case in many sexually transmitted infections, dynamic
models are required [22].

Several schemata exist for guiding the choice [8,21,32,37,38],
which can significantly affect predictions [7,8,22,39].

How Should Uncertainty be Managed?

Methodological uncertainty

Most dynamic transmission modeling has been performed by us-
ing system dynamics, in which transition between compartments
is represented by differential equations. With increases in com-
puting power, it has become possible to realize dynamic transmis-
sion models by using agent-based approaches in which each
member of a population is represented individually [40–42]. De-
terministic compartmental models are useful for modeling the
average behavior of disease epidemics in large populations. When
stochastic effects (e.g., extinction of disease in small populations),
complex interactions between behavior and disease, or distinctly
nonrandom mixing patterns (e.g., movement of disease on net-
works) are important, stochastic agent-based approaches may be
preferred. The choice of method may influence the results, and
analysts and decision makers should be aware of these effects.

Best Practices

V-2 The appropriate type of dynamic transmission model should be
used, based in part on the complexity of the interactions as well as the
population size and the role of chance effects. This model could be
deterministic or stochastic, and population or individual-based. Justi-
fication for the model structure should be given.

Deterministic models, in which every state variable is uniquely
determined by the parameter values and previous state-variable
values, always give the same results for the same starting condi-
tions and parameter values. They approximate a system’s average
behavior and are most appropriate when all subgroups are large.
They are comparatively easy to fit to data and thus are easier to
calibrate. In a stochastic model, state variables are described by
probability distributions, incorporating the role of chance. This
often occurs in small populations or when a subgroup is small (at
an epidemic’s beginning or ends, e.g.) that is, when local extinc-
tion is likely.

Population-based models track groups, while individual-based
models track each individual explicitly over time. The latter treat
individuals as discrete entities who, instead of moving between
compartments, change their internal “state” (e.g., from suscepti-
ble to infected) on the basis of their interactions. Given that one
individual characteristic is prior history, individual-based models
are particularly useful when risk depends on past events; repre-
sentation of such phenomena in population-based models, in con-
trast, requires many components. Individual-based models can
incorporate population heterogeneity and have the flexibility to
assess complex interventions. Disadvantages include slower
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speed, lack of analytical tractability, and challenges in parameter-
ization. They are invariably stochastic, while population-based
models can be either stochastic or deterministic.

Uncertainty in choice of economic parameters

Many control programs against communicable diseases are pre-
ventative in nature, and, therefore, often very sensitive to the dis-
count rate and the time horizon of the analysis [43], as the up-front
costs are usually considerable.

Many economic evaluation guidelines call for a “lifetime” ho-
rizon. However, the concept of a lifetime horizon is not well de-
fined for dynamic models: these models often concern whole pop-
ulations, which change over time because of births, deaths, and
migrations, and second-order effects can persist far into the fu-
ture. For example, vaccinating an individual today might prevent
infection transmission several years later; individuals not infected
later would accrue benefits for the remainder of their lives and
also potentially not infect others, who would accrue benefits for
the remainder of their lives. Consistent with the rationale for us-
ing a lifetime horizon, the time horizon should be long enough to
capture all the effects of the intervention. Although an infinite
horizon could be used to capture all these effects, such an ap-
proach may not be useful or realistic for decision making. In some
cases, it is sufficient to use the lifetime of the first vaccinated
cohort. In other cases, infinite time horizons can give results dif-
ferent from those obtained by using long fixed time horizons (e.g.
75 or 100 years) [44]. Fixed time horizons can produce artifacts
(e.g., the benefits to a cohort vaccinated just before the time hori-
zon end will not be included in the cost-effectiveness estimate,
though the vaccination costs will).

Best Practices

V-3 Conduct sensitivity analysis on the time horizon and the discount
rate.

Benefits and negative outcomes may vary nonmonotonically
over time, making projections of economic attractiveness depen-
dent on the time horizon chosen [32]. With high discount rates, the
time horizon is less important, as distant future costs, savings,
and health gains add little to the total. Thus, it is recommended
that modelers conduct sensitivity analysis on both the time hori-
zon and the discount rate [8,32,43].

Structural uncertainty

Frequently, there is uncertainty related to the biological properties
and relationships that comprise a disease transmission system
[45]. For example, in modeling transmission of human papilloma-
virus, both susceptible-infectious-susceptible (SIS) and susceptible-
infectious-removed/immune (SIR) frameworks have been used be-
cause of insufficient information about the acquisition and duration
of immunity after infection with a high-risk human papillomavirus
strain [46]. The presence of a (controversial) short-term immune
state associated with untreated infection has led to the use of (SIRS)
models for chlamydia, and the incorporation of such a state repro-
duces observed “rebound” when screening programs are modeled
[47,48]. Alternate structural assumptions may result in markedly dif-
ferent projections of economic attractiveness.

Best Practices

V-4 Conduct uncertainty analyses on known key structural assump-
tions that may have an impact on the conclusions, or justify the omis-
sion of such analyses.

Structural uncertainty refers to the impact of model choice and
structure on cost and effect projections (and thus on policy deci-
sions). Structural uncertainty may relate to transmission routes
and important risk groups (by age, sex, or risk status), behavioral
assumptions about contact patterns (e.g., instantaneous vs. long-
term partnerships, nature of mixing between age groups), immu-
nity durability following infection, changes in host infectiousness
over time, and pathogen strain competition and replacement. A
decision not to include a specific variable or structure may alter
results. Structural uncertainty is often ignored, despite evidence
that it can have a much greater impact on results than parameter
uncertainty [7,8,39,47]. Often, not enough is known about a sys-
tem’s biological properties for precise definition of functional
relationships; alternatively, several approaches may be possi-
ble to derive a model framework for a biological process. It is
particularly important to consider structural uncertainty in dy-
namic models as it can be extremely influential because of non-
linear feedback effects, leading to qualitatively different dy-
namic regimes [39,48,49].

For vaccine programs, key areas of structural uncertainty re-
late to representation of the actual timing of vaccine doses and the
impact of boosting. It may be difficult to distinguish effectiveness
components by using empirical data: vaccine “take” (probability
that a vaccinated individual develops measurable immunity) from
vaccine efficacy (degree of protection against infection per con-
tact). Sexually transmitted infection models pose challenges re-
lated to explicit structural representations of partnerships (and
partner concurrency), contact tracing or partner notification, and
reinfection within partnerships [50].

Parameter uncertainty

Uncertainty in parameter values can be more influential in dy-
namic than in static models because of nonlinear feedback effects,
leading to qualitatively different dynamic regimes. It is well
known that dynamic systems may display qualitatively different
behavior in different parameter regions. For example, while in
some regions a stable endemic equilibrium may exist, in other
regions, the system might have oscillatory or even chaotic behav-
ior. A small shift in parameter values may move from one dynamic
regime to another (e.g., transition from a disease-free state to an
endemic equilibrium near R0 of 1, where small changes in param-
eter values can cause large changes in prevalence). Several models
have evaluated nonlinear, and “catastrophic” (for the pathogen),
effects of interventions for hepatitis B virus and pertussis [49,51].
This phenomenon also has implications for intervention effective-
ness. If an intervention is implemented in a situation near a
threshold, the indirect effects may be very large. The same pro-
gram implemented in a different parameter region may result in a
linear relationship between intervention effort and effectiveness.

Accurate parameter measurement for communicable disease
models is challenging. The severity of many communicable dis-
eases of public health importance is extremely variable, and sur-
veillance systems may capture information only on those with
symptoms sufficiently severe to warrant presentation for medical
care and diagnostic testing. This also complicates the estimation
of infection transmissibility. Thus, modeling natural history from
surveillance data likely underestimates disease incidence and
overestimates severity, hospitalization, and case-fatality. For
many communicable diseases, there is also a disconnect between
severity and effective infectiousness as more symptomatic indi-
viduals may modify their behavior in a way that reduces transmis-
sibility. Thus, transmission by minimally symptomatic individu-
als may represent a significant problem for control [52]. Serological
studies may be used to overcome some of these challenges as
antibody responses to infection provide a relatively durable past
infection record, provided that seroconversion reliably occurs on
infection. Seroprevalence curves can be used to estimate inci-
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dence among uninfected individuals according to age, sex, and
other characteristics [8,53].

Transmission typically depends not only on infectiousness but
also on contact patterns. Empirical data on contact patterns
within, and between, age groups derived from large population-
based surveys are available for Europe [54]. Surveys of sexual be-
havior are also available for some populations although estimates
may be biased by social desirability effects and by failure to cap-
ture highly influential core groups [55].

● Intervention effectiveness

The impact of interventions is often estimated from surveillance
data, which are subject to the limitations of observational studies:
misidentification of random variation as a true change in inci-
dence, the tendency of communicable diseases to evolve and os-
cillate with population immunity and strain variation, and con-
founding by unmeasured interventions or population changes
[56]. Long-standing interventions may make the identification of
preintervention data problematic.

Randomized controlled trials of intervention effectiveness are
preferred as a source, but one should consider under- or overesti-
mation. When individual randomization is used, intervention ef-
fectiveness will be underestimated because indirect effects will
not be captured since clinical trials usually incorporate a tiny frac-
tion of the population and, thus, neither control nor intervention
arms experience a reduced force of infection. Trials often do not
assess hard end points but rather differences in immune re-
sponses, forcing models to extrapolate to mortality and serious
morbidity.

● Identification and synthesis of parameter values from pub-
lished literature

Identification of parameter values for modeling communicable
diseases present some issues. Observational outbreak studies are
more likely to be submitted for publication if they are large or
costly, biasing reproductive numbers and outbreak sizes upward.
Communicable disease dynamics differ across populations be-
cause of heterogeneity in geography and climate, socioeconomic
status, genetics, demography, and availability of control interven-
tions. Thus, data synthesis across multiple studies should be used
with caution and prudently to construct plausible ranges or rela-
tively flat priors, rather than parametric distributions, for stochas-
tic simulation or sensitivity analyses.

● Calibration and refinement of parameter estimates

Given the complexities of accurate parameter estimation, model cal-
ibration is important. Some authors have recognized the importance
of identifiability [57]). It may force reestimation of uncertain or im-
plausible parameters and may be used to generate plausible values
when empirical estimates are unavailable. Furthermore, reproduc-
ing observed disease incidence, trends, or natural history helps es-
tablish a model’s credibility with decision makers.

Difficulty in calibrating across multiple domains suggests that
model structures, approaches, or assumptions are incorrect. While
frustrating, calibration difficulties should not be glossed over or ig-
nored. They are an important mechanism for quality control and
may suggest that the current understanding of the disease biology is
incorrect, helping frame priorities for future research.

● Probabilistic sensitivity analysis

Many current recommendations call for probabilistic sensitivity
analysis as part of economic evaluations. It may be challenging or
inappropriate to perform this type of analysis with dynamic trans-

mission models. In dynamic transmission models, many of the
parameters related to mixing and transmission are correlated and
these correlations need to be preserved to ensure sensible models
and reasonable fit to data. Depending on the method of parame-
terizing the models, however, the correlations may not be known.
If extensive data are available, it may be possible to conduct prob-
abilistic sensitivity analysis on dynamic models (e.g., [44]), but this
is not the norm. Thus, we do not include probabilistic sensitivity
analysis as part of our best practice recommendations, although
future research may resolve some of the methodological chal-
lenges associated with this type of analysis.

Best Practices

V-5 When conducting sensitivity analyses, consideration of important
epidemic thresholds is helpful when there is a possibility of the model
exhibiting alternate behaviors.

In nonlinear dynamic transmission models, the existence of
parameter space regions that characterize distinct model behav-
iors (e.g., epidemic spread vs. extinction) complicates uncertainty
analyses. Modelers should define such behaviorally distinct re-
gions and explicitly state whether or not the sensitivity analysis
has been confined to one region. If the sensitivity analysis encom-
passes more than one region, it is informative to state the proba-
bility of achieving different equilibrium states as parameter values
are varied.

Reporting Results and Informing Decision Making

In addition to general guidelines for reporting the results of eco-
nomic evaluations, reports of communicable disease models
should provide the estimated change in burden of infection due to
an intervention, as this constitutes a major motivation for the use
of dynamic rather than static models. Infections can be further
disaggregated according to whether they are directly or indirectly
prevented, their route of transmission (e.g., sexual, vertical, and by
vector), and population subgroup, as appropriate. Other outcomes
appropriate for reporting include changes in the long-run equilib-
rium level (incidence or prevalence) of infection, likelihood of dis-
ease elimination, and changes in Re.

Ensuring transparency and credibility

Agencies charged with the assessment of novel health technolo-
gies or developing public health policy may be unaccustomed to
dynamic models [58–60]. Knowledge translation, provision of ed-
ucational opportunities, and “short courses” for professional de-
velopment will ensure that end users have the skills to understand
these models. Joint publication where several groups have evalu-
ated similar policy questions by using disparate approaches can
help build confidence in the use of models as a tool for policy (e.g.,
[61]), as shown by a recently conducted appraisal of modeling tools
for evaluating the cost-effectiveness of various vaccines in differ-
ent settings [62]).

Key considerations specific to transparent presentation of
communicable disease models include provision of information
on how effective contact rates and mixing patterns have been
inferred, as these depend on model structure such that different
estimates may be obtained by using a common data set. There are
large variations in the values for empirical, literature-derived es-
timates (e.g., [63,64]). When system dynamics models are used, the
differential equations should be included as part of any publica-
tions. When agent-based models are used, the behavior of agents
should be specified in detail, including movement of agents and
mixing assumptions. Descriptions of movement should address
whether the model makes use of geographic zones, how they are
defined, and how agents move between zones. Descriptions of
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mixing behavior should include how new contacts are acquired, as
well as the duration of partnerships. Finally, rules governing de-
mographics (births, deaths, household formation/dissolution,
etc.) should be stated.

Best Practices

V-6 If using differential equations, provide them. Tabulate all initial val-
ues and parameters if not previously published, including the mixing
matrix, and supply details of the type of mixing considered.

V-7 If using agent-based model, thoroughly describe the rules govern-
ing the agents, the input parameter values, initial conditions, and all
submodels.

Presentation of all parameter values is common in most cost-effective-
ness analyses. The other information specified makes it possible for
independent research groups to validate or reproduce published find-
ings.

V-8 Show the transmission dynamics over time (e.g., infection and
disease incidence and prevalence). When applicable, report changes in
other infection-specific outcomes such as strain replacement and the
emergence of resistance to antimicrobial drugs.

This information highlights the need for and the impact of
using dynamic models.

Software Options

A number of software options are available, each having its own
strengths and weaknesses. Spreadsheets, such as Microsoft Excel,
are commonly used. This environment allows rapid development
and because of the ubiquity of spreadsheet software, models de-
veloped in this environment are easy to distribute and use by a
wide audience. However, spreadsheet development suffers from
two significant limitations. First, it is very difficult to change struc-
tural assumptions after they have been coded. Second, in a
spreadsheet environment, the Euler method is often used to proj-
ect the system of differential equations forward in time. However,
this method is not as accurate as other numerical techniques [65].

There are several software packages either designed or easily
adapted for dynamic transmission models. This includes Stella by
isee Systems and Berkeley Madonna. Many of these packages con-
tain graphical user interfaces to allow rapid development and en-
hance communication, and most have multiple calculation options
for numerical procedures. However, the modeling environments
may prevent users from implementing some desired modeling as-
sumptions. Thus, many analysts prefer to produce their own custom
code in Matlab, R, C/C��, or other programming environments.
This allows the greatest flexibility in terms of modeling assump-
tions, model calibration, uncertainty analysis, and choice of nu-
merical techniques. However, this approach requires the most de-
velopment effort, and the programs may lack transparency to
those not familiar with these environments.

Source of financial support: This Task Force was supported by
ISPOR.
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