

Advances in HEOR

New Frontiers Based on Developments in Artificial Intelligence

Moderator: Eric Wu Managing Principal, Analysis Group, Inc.

November 14, 2018

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC + BEUJING + BRUSSELS + LONDON + MONTREAL + PARIS

ANALYSIS GROUP

What Is Artificial Intelligence?

Artificial Intelligence borrows from many different fields

- Artificial Intelligence (AI) is an umbrella term usually referring to new methodological advances in the fields of Machine Learning (ML) and Natural Language Processing (NLP)
- ML focuses on pattern recognition and computational learning, and is used to either create predictive algorithms or to make classifications based on data
- Unlike traditional statistical methods, ML methods are capable of analyzing data and exploring unknown patterns without prior knowledge of possible relationships
- NLP combines statistics, computer science, and data management to process and analyze large amounts of language data

```
Advances in HEOR
```

November 14, 2018

Developing the electronic mental health record for AI applications: the CRIS experience

Rob Stewart

on the third in the latter

Lead, Clinical and Population Informatics SLAM Biomedical Research Centre for Mental Health

Professor of Psychiatric Epidemiology and **Clinical Informatics** King's College London

Consultant in Liaison Old Age Psychiatry, South London & Maudsley NHS Foundation Trust

I I I IH HE BE KING'S HEALTH PARTNERS

NHS

brc.slam.nhs.uk

4

The 'patient journey' from the unmodified mental health EHR

	Intervention Outcome	
Intervention context		
	1) Overactive, aggressive, disruptive or agitated behaviour	0-4
	2) Non-accidental self-injury	0-4
Demographics	3) Problem drinking or drug taking	0-4
Diagnosis	4) Cognitive Problems	0-4
	5) Physical liness or disability problems	0-4
	6) Problems with hallucinations and delusions	0-4
	7) Problems with depressed mood	0-4
	B) Other mental or behavioural problems (0-4) Rate 0 for problem	ns 0-4
	Specify single most severe disorder A – J Not Rated	A-J
	9) Problems with relationships	0-4
	10) Problems with activities of daily living	0.4
	11) Problems with living conditions	0-4
	12) Problems with occupation and activities	0-4

National Institute for Health Besearch

The 'patient journey' from the unmodified mental health EHR

brc.slam.nhs.uk

brc.slam.nhs.uk

Applications – hospitalisation data linkage

brc.slam.nhs.uk https://www.ncbi.nlm.nih.gov/pubmed/28838779

brc.slam.nhs.uk

brc.slam.nhs.uk

brc.slam.nhs.uk

Symptoms/phenotyping NLP

Poor motivation Blunted / flat affect Diminished eye contact Emotional withdrawal Poor rapport Social withdrawal Poverty of speech Apathy	Hallucinations Delusions Hostility Arousal Aggression Agitation Suspicious Paranoia	Reduced coherence Formal thought disorder Circumstantial speech Derailment Flight of ideas Thought block	IVE
Concrete thinking Poverty of thought	Persecutory ideas	Low mood Anhedonia Guilt	
Elation Euphoria Elevated mood Insomnia Disturbed sleep Irritability Grandiosity Pressured speech	Echolalia Echopraxia Immobility Mannerism Rigidity Posturing Perseverance Stupor Mute	Hopelessness Reduced appetite Suicidality Poor concentration Weight loss Lowered energy / anergia Helplessness Psychomotor retardation Worthlessness Tearfulness	
Mood instability Affective instability Emotional instability	Waxy flexibility	28,000+ annotations	

NIHR Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London NHS National Institute for Health Besearch

Applications – symptoms NLP

brc.slam.nhs.uk https://bmjopen.bmj.com/content/7/1/e012012.long

brc.slam.nhs.uk

NIHR Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London NHS National Institute for Health Besearch

Decision support: co-prescribing in dementia www.medichec.com

Clinical informatics – the multi-disciplinary team

Leads

.

- Matthew Broadbent, Richard Dobson, Stephen Docherty, Rob Stewart
- Administration / management
 - Debbie Cummings, Anna Kolliakou, Megan Pritchard
- Technical team

Amelia Jewell (data linkage), Shanmukha Gudiseva (compute), Hitesh Shetty (data extraction), Jyoti (NLP support)

- Epidemiology / Clinical
 Craig Colling, Lauren Carson, Lauren Cross, Johnny Downs, Rina Dutta, Sophie Epstein, Daniela Fonseca de Freitas, Emma Francis, Richard Hayes, Giouliana Kadra, Christoph Mueller, Rashmi Patel, Gayan Perera, Kate Polling, Katherine Sleeman, Brendon Stubbs
- Bioinformatics / Computer Science / NLP
 - Elizabeth Baker, Daniel Bean, Andre Bittar, David Chandran, Amos Folarin, Karen Hodgson, Zina Ibrahim, Ehtesham Iqbal, Julia Ive, Daniel Leightly, Stephen Newhouse, Angus Roberts, Hegler Tissot, Sumithra Velupillai, Natalia Viali, Honghan Wu
- PhD studentships
 - Delia Bishara, Andrea Fernandes, Nikeysha Bell, Katrina Davies, Usha Gungabissoon, Richard Jackson, Leo Koeser, Alice Wickersham,
- Oversight and Governance
 - Felicity Callard, Patrick Green, Jenny Liebscher, Sean Maskey, Katharine Rimes, Murat Soncul
- SLAM partners
 - Nicola Byrne, Fiona Gaughran, Anthony Schnarr
- University of Sheffield collaborators
 - Kalina Bontcheva, Genevieve Gorrell, Ian Roberts

brc.slam.nhs.uk

ANALYSIS GROUP

Artificial Intelligence in Literature Reviews

Case Studies

Eric Wu Managing Principal, Analysis Group, Inc.

BOSTON CHICAGO DALLAS DENVER LOSANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC + BELJING + BRUSSELS + LONDON + MONTREAL + PARIS

Health Besearch

National Institute for

NHS

ANALYSIS GROUP	
Introduction	
Literature reviews, both systematic (SLRs) and targeted (TLRs), critical component of various decision-making processes in healt	are a hcare
 Literature reviews aim to be unbiased and have high recall (i.e. c relevant articles) 	apture all
In both TLRs and SLRs, screening of a large number of articles is required	s typically
 Only a small fraction of articles are typically selected 	
The amount of medical literature has been growing rapidly – with approximately 46% increase of new MEDLINE articles each year	•
We need to be ready to handle and review this every growing bo medical literature	dy of
Artificial Intelligence and Causality November 14, 2018 PRIVILEGE	D AND CONFIDENTIAL23

Objectives		
We are presenting two c challenges related to qua literature reviews	ase studies to illustrate how ality, transparency, and lab	w AI can help address or-intensiveness in

Тех	t Feature Extraction
🗆 Te	ext feature extraction (NLP) includes:
-	Customized features: e.g., presence of specific keywords, created explicitly by th reviewer
-	Automated feature generation
	Topic modeling (LDA)
-	Bag-of-words based approach
-	Neural network-based approach
•	Syntactic feature generation

		AI-based review	
Reviewer 1	95 hours	95 hours	
Reviewer 2	95 hours	6 hours	
Reconciler	16 hours	10 hours	
Programmer	+	18 hours	
Frogrammer		To hours	

<image><section-header><section-header><section-header><section-header><text><text>

ce claims database	e is used to simulate an outcome
ling a treatment en	ect of 1.5 (RR)
provide a framewo ands of potential pr	ork to build a high dimensional edictors
odels are used to e	stimate the treatment selection
I model is used to	estimate the treatment effect
	e provide a framewo ands of potential pr lodels are used to e rd model is used to o

ANALYSIS GROUP

Model Estimation and Results

Real Effect = 1.5

Model	Estimated ATE
Univariate Model	1.311 ± 0.098
Standard Propensity Score Approach	1.374 ± 0.104
Logistic Regression with Lasso (HD)	1.496 ± 0.119
Random Forest (HD)	1.533 ± 0.123
Boosting (HD)	1.501 ± 0.118
Deep Learning (HD)	1.502 ± 0.119

Artificial Intelligence and Causality

November 14, 2018

ANALYSIS GROUP		
Backup and Re	ferences	

Ш	ANALYSIS GROUP			
N V	Iodel Comparis ariable Importance To	o ns p 10 based on mear	n rank	
Rank	Lasso	Random Forest	Boosting	Deep Learning
1	Drug Class 2725 (Biguanides)	Drug Class 2725 (Biguanides)	Drug Class 2725 (Biguanides)	Drug Class 2725 (Biguanides)
2	Drug Class 2710 (Insulin)	dx25002 (Uncontrolled Diabetes Mellitus)	Drug Class 2755 (Dipeptidyl Peptidase-4 Inhibitors)	Region (Mid-Atlantic)
3	dx25002 (Uncontrolled Type II Diabetes Mellitus)	Drug Class 9705 (Parenteral Therapy Supplies)	Drug Class 2799 (Antidiabetic Combinations)	dx25000 (Type II Diabetes Mellitu: not stated as uncontrolled)
4	Drug Class 2799 (Antidiabetic Combinations)	Drug Class 2710 (Insulin)	Drug Class 2710 (Insulin)	dx25003 (Uncontrolled Type I Diabetes Mellitus)
5	Region (Mid-Atlantic)	Age (40-49)	dx25002 (Uncontrolled Type II Diabetes Mellitus)	Drug Class 3940 (HMG COA Reductase Inhibitor Combinations
Artif	icial Intelligence and Causality	November 14, 20	18	PRIVILEGED AND CONFIDENTIAL 46

ANALYSIS GROUP

Model Comparisons

Variable Importance Top 10 based on mean rank

Ran	k Lasso	Random Forest	Boosting	Deep Learning
6	Drug Class 2755 (Dipeptidyl Peptidase-4 inhibitors)	dxV7612 (Mammogram Screening)	Region (Mid-Atlantic)	dx25001 (Type I Diabetes Mellitus not stated as uncontrolled)
7	Age (50-59)	Age (50-59)	Drug Class 9705 (Parenteral Therapy Supplies)	Drug Class 2710 (Insulin)
8	Age (40-49)	Drug Class 3610 (ACE Inhibitors)	Drug Class 3940 (HMG COA Reductase Inhibitor Combinations)	dx7999 (Unspecified Cause of Morbidity)
9	dxV7612 (Mammogram Screening)	dx25003 (Uncontrolled Type I Diabetes Mellitus)	Age (70-79)	dx79021 (Nervousness)
10	Age (30-39)	Region (Mid-Atlantic)	Age (40-49)	dx25002 (Uncontrolled Type II Diabetes Mellitus)
Ar	ificial Intelligence and Causality	November 14, 201	8	PRIVILEGED AND CONFIDENTIAL 47

Model	30 Least Correlated	Only 20 Most Correlated
		(LASSO only)
Lasso	1.496 ± 0.119	1.436 ± 0.11
Random Forest	1.456 ± 0.115	-
Boosting	1.504 ± 0.118	-
Deep Learning	1.499 ± 0.117	-

ANALYSIS GROUP

Selected References

Boosted Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods. 2004; 9 (4): 403. https://doi.org/<u>10.1037/1082-</u> <u>989X.9.4.403</u>

November 14, 2018

Artificial Intelligence and Causality

ANALYSIS GROUP

Selected References

- [5] Westreich D, Lessler J, Jonsson-Funk M. 2010. Propensity Score Estimation: Machine Learning and Classification Methods as Alternatives to Logistic Regression. Journal of Clinical Epidemiology. 2010; 63 (8): 826. https://doi.org/10.1016/j.jclinepi.2009.11.020
 [6] Efron B, and Hastie T. Computer age statistical inference: Algorithms, evidence, and data science. Vol. 5. New York: Cambridge University Press; 2016.
- [7] James RG, Witten D, Hastie T., and Tibshirani R. An introduction to statistical learning with applications. New york: Springer; 2013.
- [8] Dadson N, Pinheiro L, Royer J. Decision Making with Machine learning in Our Modern, Data-Rich Health Care Industry. In Birnbaum HG, Greenberg PE, editors. Decision Making in a World of Comparative Effectiveness Research. Adis, Singapore; 2017. pp. 277-289. https://doi.org/10.1007/978-981-10-3262-2_21

Artificial Intelligence and Causality

November 14, 2018

PRIVILEGED AND CONFIDENTIAL 50

Π	ANALYSIS GROUP
	LODING, INVESTIGATION OF PARTICIPATION

Selected References

- [9] Casella G, Berger RL. Statistical inference. 2nd edition. Australia: Thomson Learning; 2002.
- [10] H2O.ai Team. R Interface for H2O.R. In package version 3.10.4.6. 2017. h2o: https://github.com/h2oai/h2o-3
- [11] Therneau TM. A Package for Survival Analysis in S. Version 2.38. 2015.

https://CRAN.R-project.org/package=survival.

Artificial Intelligence and Causality

November 14, 2018