

Rheinische Fachhochschule Köln

University of Applied Sciences

Health Care Data in real time *Citizen - Patient System - Science*

Different user groups different kind of data

Citizen

- Easy data collection in every day
 - Eg tracking of actions (as walking)
 - Eg tracking of heart beat (frequence)
- Supporting behaviour
- Supporting actions in day time

Different user groups different kind of data Patient

- Easy data collection in every day on specific health conditions
 - tracking of laboratory data SURVA glucose)
 - tracking control the treatment conditions
- Supporting actions in day time in connection to specific training courses

Different user groups different kind of data System

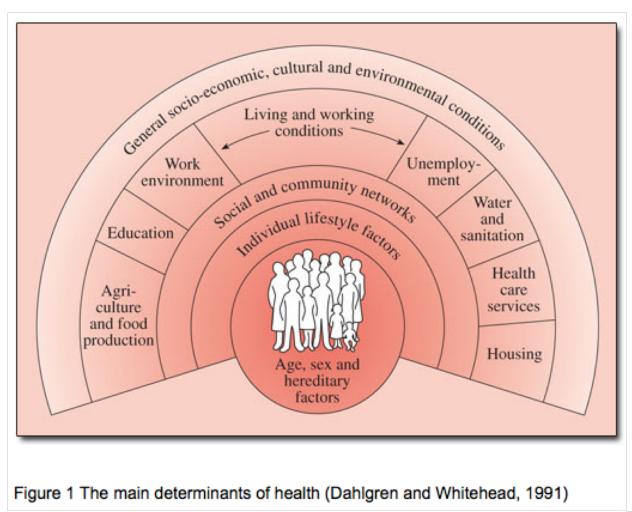
Retrieving data out of dail
Eg tracking of
Eg tracking of
Eg tracking of
Supporting actions in administrative areas

Different user groups different kind of data

Science

- Easy data collection in every day on soort health conditions
 - tracking of laboratory bars as plood glue

and micro level (patient)



Based on the kind and use

- data can be connected to
 - easy handling private information
 - being part of medical device legislation
 - pharmaceutical device legislation
 - health care data legislation
 - data protection legislation

Based on health

Health Care Data in real time

Dr.med H-P Dauben

Due to the different legal use cases

- Data must assure
 - different level of secureness
 - different level of reliability
 - different level of legal requirements

New IT techniques: eg block chain actions

- Might be useful in
 - Technical transaction of eg. prescriptions
 - Issues: spreading of data into an undefined cloud
 - Solution: describe the technology by itself without potential existing implementations (eg. Bitcoin)

Data from lifestyle gadgets

- Can be useful in behaviour changes but must be very clear separated from laboratory data.
- Using as hints there is a low risk
- Misusing as diagnostic tool there is the medical device hurdle to ensure the correctness of data
- Is there need to follow this? In prevention less could be more and innovation implementation to get more real life data could be useful.

Data from social networks

- Anonymous data from people with unclear situations (whether real or not) can be also just hidden advertisement
- Personal experiences are not necessary following scientific requirements and being base on feelings more than on facts

Trade off: Accuracy, Risk of use, Risk of decision

There is a continious requirment regarding

the level of decision

the risk of decision within micro decisions (the life of a patient)

the risk of decision within system (macro) decisions and failing in investments

Trade off: personal data protection and scientific requirements

- The access to data for scientific analysis must be as easy as possible taking into account the personal needs and requirments to protect a person.
- This is including: the potential risk of combining data from different sources
- It should ignore: whether or not the scientific idea is following stream line scientitifc ideas or not.

Scientific issues in "big data"

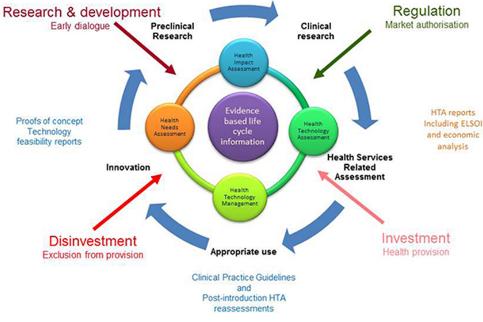
- Populistic data with very often unclear scientific results
- Are not helping to avoid the use of natural intelligence
- Have never prooved to help in medical areas on micro decision level
- Unlcear costs (no assessment whether the use is really helping)
- Can't replace personal ,translation' of evidence (ebm)

Proposal health data

- Data must be transparable
- Only as many data as needed
- Informing the owner of data about the use of their data
- Using technologies to approve the validity of data
- Using data according to the level of decisions

From history to future How to handle predictive information?

- Medical prediction:
 - based on published information
 - based on models
 - based on

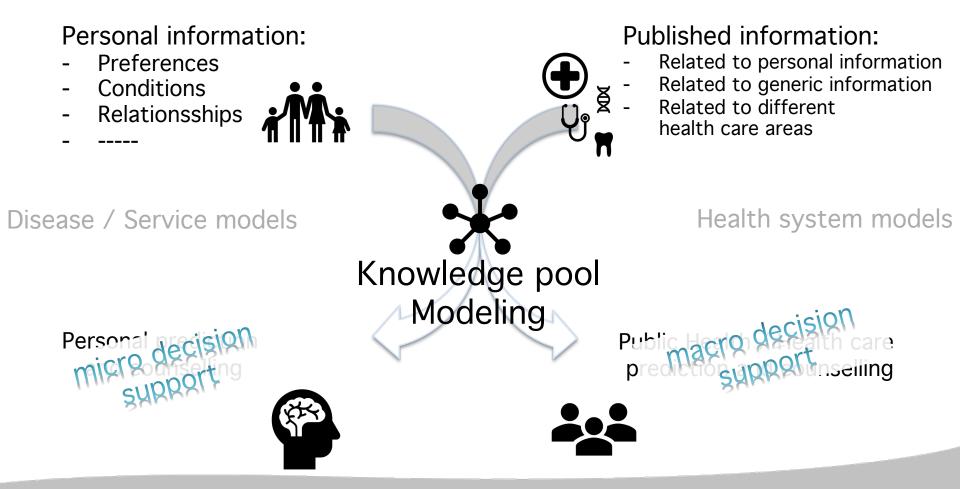

How can evidence based medicine be included?

Rheinische Fachhochschule Köln University of Applied Sciences

Evidence based medicine

- Incorporating
 - personal information
 - Local services in health care settings and daily life affairs
 - Published knowledge information in health models

Clinical trials and other epidemiological designs



Requirements in communication

- The knowledge and the predicitve data have to be transformed in readable information:
 - Fulfilling the requirements of the different customers
 - Supporting their background knowledge and language

Proposal predictive models

Health Care Data in real time

Dr.med H-P Dauben