

ISPOR 7th Asia-Pacific Conference, Suntec Convention & Exhibition Center, Singapore Patient-Reported Outcomes & Patient Preference Research Sunday, 4 September 2016, 5:00 PM - 6:00 PM @ Room 326

W4: COMBINING TWO TYPES OF VALUATION DATA TO ESTIMATE HEALTH STATE UTILITIES: THE HYBRID REGRESSION MODEL

Discussion Leaders: Nan Luo National University of Singapore, Singapore Kim Rand-Hendriksen University of Oslo, Norway Mark Oppe Juan M. Ramos-Goñi EuroQol Research Foundation, Rotterdam, The Netherlands

Conflict of interest & disclaimer

- The discussion leaders are members of the EuroQol Group, a not-for-profit international research organization
- The views of the discussion leaders expressed in the workshop do not necessarily reflect the views of the EuroQol Group

Health-State Valuation & Data Collection

Nan Luo (nan_luo@nuhs.edu.sg) National University of Singapore, Singapore

www.euroqol.org

Health-state utility

- Value of a health state to a stakeholder such as the general public
- Measured on a cardinal scale anchored by 0 (death) and 1 (full health)
- Quality-of-life weights for calculating quality-adjusted life years (QALYs) in cost-utility analysis
- Determination of utility values
 - Direct method: eliciting the utility value of a health state from a respondent using a valuation technique such as standard gamble
 - Indirect method: preference-based instrument

The EQ-5D-5L instrument

- The questionnaire
 - A new version of the EQ-5D instrument
 - Consist of a descriptive system and a visual analog scale for measuring health related quality of life
 - Defines 3,125 unique health states with 5 dimensions (mobility, self-care, usual activities, pain/discomfort, anxiety/depression) and 5 levels of problems for each dimension (no/slight/moderate/severe/extreme)
- The value set
 - Consist of utility values for all 3,125 EQ-5D-5L health states
 - Values anchored by 0 (dead) and 1 (full health)
 - Reflecting the average values of the health states to the general public
 - Country-specific value set

www.euroqol.org

EQ-5D Deriving utility values using EQ-5D-5L

Estimating an EQ-5D utility value set

- A 2-step procedure is used:
 - First, the values for a subset of health states are derived from stakeholders using the direct valuation approach
 - Second, a function is estimated by modeling the directly measured values to predict values for all health states

EQ-5D-5L Valuation Study

- To establish EQ-5D-5L value sets using a standardized data collection protocol
- The data collection protocol has been used in many countries including 8 Asian countries
- Main features:
 - Face-to-face personal interview using a computer program called EuroQol Valuation Technology (EQ-VT)
 - Interviewer training and monitoring
 - Use of two valuation methods: time trade-off (TTO) & discrete choice experiment (DCE)

The EQ-VT interview

- 1. Introduction
 - a. Self-reported health on the EQ-5D-5L descriptive system
 - b. Self-reported health on the EQ-VAS
 - c. Background questions
- 2. Composite Time Trade-Off (TTO)
 - a. Instructions and example
 - b. Three practices
 - c. Valuation of 10 EQ-5D-5L states
 - d. Feedback module
 - e. Debriefing questions
- 3. Discrete Choice Experiment
 - a. Instructions
 - b. Valuation of 7 pairs of EQ-5D-5L states
 - c. Debriefing questions
- 4. Demographic/additional questions

rww.euroqol.org

Composite TTO

- Conventional or lead-time TTO procedure is used contingent on the value of a health state to the respondent
- If the health state is considered as better than dead, the procedure used in the EQ-5D-3L valuation studies is used
- If the health state is considered as worse than dead, a new, lead-time procedure is used

Conventional TTO

Lead-Time TTO

DCE task

Health states for direct valuation

TTO

- 86 states were divided into 10 blocks, with each block containing 10 states
 - 1 mildest state
 - 55555 (all-worst)
 - 8 other states
- Each respondent was randomized to value one block

DCE

- 196 pairs were randomly divided into 28 blocks, with each block containing 7 pairs of states
- Each respondent was randomized to value one block

Overview of modelling analysis

Data	Model function form	Model parameter estimator		Model validation
тто	Lincor modelo	OLS; GLS; etc.	MAE	
DCE	Linear models Non-linear models	Conditional logit; Conditional probit	MAE	Out-of-sample health states Out-of-sample
TTO + DCE		"Hybrid" estimator	???	respondents

OLS - ordinary least square; GLS - generalized least square; MAE - mean absolute error

www.euroqol.org

The 20-parameter main-effects model

 $y = \alpha +$

 $\beta_{MO2} x_{MO2} + \beta_{SC2} x_{SC2} + \beta_{UA2} x_{UA2} + \beta_{PD2} x_{PD2} + \beta_{AD2} x_{AD2} +$

 $\beta_{MO3}x_{MO3}+\beta_{SC3}x_{SC3}+\beta_{UA3}x_{UA3}+\beta_{PD3}x_{PD3}+\beta_{AD3}x_{AD3}+$

 $\beta_{MO4} x_{MO4} + \beta_{SC4} x_{SC4} + \beta_{UA4} x_{UA4} + \beta_{PD4} x_{PD4} + \beta_{AD4} x_{AD4} +$

 $\beta_{MO5} x_{MO5} + \beta_{SC5} x_{SC5} + \beta_{UA5} x_{UA5} + \beta_{PD5} x_{PD5} + \beta_{AD5} x_{AD5}$

DCE models and non-linear (constrained) models

Kim Rand-Hendriksen, PhD University of Oslo

Singapore, September 2016

www.euroqol.org

DCE task - reminder

DCE models (rationale)

- We assume that respondents will select the alternative that maximizes their utility, with some degree of random error.
- If u(A) is the utility of alternative A, and u(B) is the utility of state B, the probability of selecting A is
- Since both u(A) and u(B) are subject to random variance, u(X) = v(X) + ϵ_X

$$\begin{split} P(Y_i = \mathcal{A}) = P(U_{id} > U_{id}) &= P(V_{id} + \varepsilon_{id} > V_{id} + \varepsilon_{id}) = P(V_{id} - V_{id} > \varepsilon_{id} - \varepsilon_{id}) \\ P(Y_i = \mathcal{A}) &= \frac{e^{\mu V_{id}}}{e^{\mu V_{id}}} \\ V_t = \sum_{i=1}^{t} X_{t,i} \cdot \beta_t \end{split}$$

- Conditional logistic model
- Specific conditional logit/probit model for pair comparisons
- GLS random intercept logit/probit model

www.euroqol.org

DCE Conditional logistic model

Stata code:

generate dce_group = concat(respondent_id state id)
clogit choice dummy_variables, group(dce_group)

R code:

df\$dce_group <- interaction(df\$respondent_id, df\$state_id) Clogit(Value ~ [dummy_variables] + strata(dce_group))

. slogit value and add of anthodiw'TTG" & state_of (197, group) dos_group)

therefilm Gr .	349 11982334	mid: +4008.	8238			
Distantion 1:	log liselin	and + - 3797.	2072			
Therefain fr	key hiveins	- TTME.	7782			
Tressature by	Dog Libelin	mg + -3794.	1782			
Tresstan #1	log libelin	and + -3786.	1112			
THERE AND ADDRESS OF	Children Province	Concession in	*****		and the second second	1000
				1.8 10	12120	1413.14
				Tree.	a state a	0.0000
Log linetime.	a	2		Panis.		0.2818
value	Deet.	514. 177.		Ricki.	1994 Card	(hiteres)
10.0	4121126	.03118505	1.18	1.000	.1940.01	.1081310
041	1002028	04483177	5.86	3.343	- 0264847	12449557
ince it	.aspidata	0423833	0.49	3 500	4697922	7142804
842.8	.8503489		8.24	0.100	-4198055	
200	.130481	0011051	2.45	3.118	.2801689	.2707838
	3823480		2.80	3.005	0044541	3096396
	3843121	3189000	5-51	3.800	2212218	
	3433481	1848272	5-50	3.8831	2181945	4723872
047	2342137		3.97	8.000	110007	
0.67	0405232		\$1.96	3.331		.1041832
0.01	.4118969	.0494931	6.49	3.000	287532	1592428
445	.7218284	.0488057	4.85	3.100	-1910837	+721782
247	2611890	10030300	4.04	3.000	3627072	ACOALLI
1013	1341548	.08443394	1.98	3.155	- 0000014	.0007448
2-84	3133304	0407241	13.90	3.800	1848138	1.042141
8-11	3781377	10000030	5-84	3.883	1104/01	.0103005
mdit	.2241586	0426365	2.08	3.000	-1010400	.34753337
- 0.0.1	2471128	.0454543	4.07	3.000	5394273	
+01	.nhetees.	010000	1,80	8 800	4106888	.8314443
-	6806586	0470387	6.93	8.800	2235148	1943057

www.euroqoi.org

Specific conditional logit/probit model for DCE pair comparisons

1.01.01.01	0.000	A0.4	9CA	UA.A.	PILA.	404	Mith B.	90.0	UA.87	Pit B	10 C W	TING 4554 TINK DIAG	Public .		METHOD .	Tease, Third, and	Profile A	Security 4	Profile B	Security 1
18	4	1	4	5	3	3	2	1	5	4	2	в	0	DCE	A	19.6	14533	16	21542	14
42	6	2	3	1	3	4	1	4	3	1	4	A	1	DCE	Ą	18.2	23134	13	14314	13
75	5	5	3	4	3	1	5	2	2	5	5	в	0	DCE_	A,	9.4	53431	16	52255	19
76	2	5	1	5	2	2	4	5	2	4	4	в	. 0	DCE_	A	21.4	51522	15	45244	19
127	7	1	4	2	2	4	3	2	3	2	2	A	1	DCE_	Ą	33.2	14224	13	32322	12
180	3	4	4	1	4	5	4	5	4	3	2	A	1	DCE_	д	7.2	44145	18	45432	18
196	1	1	1	2	2	1	2	2	1	2	2	A	1	DCE_	A	52.1	11221	7	22122	9

- Generate "A-B"
- logit choice dummy_variables, nocons
- probit choice dummy_variables, nocons
- hetprobit choice dummy_variables, nocons het(dummy_variables)
- Random intercept/random slope logistic models can be fitted in STATA:
 - xtlogit choice dummy_variables
 - xtprobit choice dummy_variables
 - melogit choice dummy_variables
 - **meprobit** choice dummy_variables

Stata output

. logit value _web__edb (f method=="DCE_4" & state_id <137, moone

Constant,	Q1.	Sog	li#wlthcod	-	-5002.4	432	
intracion.	11.	5.dg	likalihood	w	-3800.0	306	
101281811	21	Sog	likelihood.	*	-3194.1	784	
ineyettab	#4	116	liselihoes.	٠	-2794.7	1222	
110000000	41	240	118411000E	÷	-3194.7	1152	

logistis seore log libelihood	**110 * -3794.775	e.		Fants Hald Frib	n of the . mil(20) . s chil .	9211 1505.47 0.0000
velue	cief.	its. \$22.		Re(a)	(994 Gast.	interval)
857	4107304	.0378569	7.13	0.000	.2393332	\$241333
	1001009	0044377	1.99	0.043	1044541	2409905
2014	0000010	D423833	1.0	0:000	24497823	3142904
800	5507409	.0698144	8.28	0.000	4330063	3100085
108	1525403	.0413853	3.42	0.054	.0301485	2707236
423	1825462	.0652889	2.02	0.025	0544567	3096396
424	.9468323	.049922	5.31	0.000	2010254	5014025
. 6123	.345248.8	10648272	5.38	0.000	.2181898	4728272
147	.2342757	.0303468	8.97	0.088	110897	-1499504
08.7	.0405232	043093	0.84	0.007	0431349	1841832
181	.4118909	0634932	8.45	5.500	347837	5262600
181	3214094	D656157	4.03	0.000	.1910837	4521735
101	.3814592	0606309	4.44	0.000	1627073	4006111
203	.1041064	.0645134	1.92	0.055	0095314	3507446
308	.9133304	0657241	\$3.99	8.000	. 10451.25	T.DADLAY
para	3751377	-0659638	3.44	0.000		1003053
842	.2241588	0628363	3.38	0.000	1010938	.3475231
inst?	2471108	.0458561	4.07	0.055	3.554272	3957943
4.01	0540466	0701023	7.90	0.000	4106475	1014445
400	4421062	0470303	96.90	0.000	3013140	5943019

www.euroqol.org

DCE constant/intercept terms

"(Original"		. 1	Reversed		
	Estimate	Std. Error	1 · · · · ·	Estimate	Std. Error	
(Intercept)	0.21164586	0.0266645	(Intercept)	-0.21164586	0.0266645	
incr mo2 diff	0.44230775	0.0526517	incr mo2 diff	0.44230775	0.0526517	
incr mo3 diff	-0.00271160	0.0602873	incr mo3 diff	-0.00271160	0.0602873	
incr mo4 diff	0.77762394	0.0592446	incr mo4 diff	0.77762394	0.0592446	
incr mo5 diff	1.16562366	0.0653388	incr mo5 diff	1.16562366	0.0653388	
incr sc2 diff	0.35921265	0.0576461	incr sc2 diff	0.35921265	0.0576461	
incr sc3 diff	-0.00847601	0.0625683	incr sc3 diff	-0.00847601	0.0625683	
incr sc4 diff	0.67629896	0.0661428	incr sc4 diff	0.67629896	0.0661428	
incr sc5 diff	0.39924359	0.0615881	incr sc5 diff	0.39924359	0.0615881	
incr ua2 diff	0.27154495	0.0549798	incr ua2 diff	0.27154495	0.0549798	
incr ua3 diff	0.04449129	0.0615065	incr ua3 diff	0.04449129	0.0615065	
incr ua4 diff	0.53745959	0.0619102	incr ua4 diff	0.53745959	0.0619102	
incr ua5 diff	0.57164557	0.0636063	incr ua5 diff	0.57164557	0.0636063	
incr pd2 diff	0.25449076	0.0580883	incr pd2 diff	0.25449076	0.0580883	
incr pd3 diff	0.03962980	0.0633029	incr pd3 diff	0.03962980	0.0633029	
incr pd4 diff	0.80788425	0.0642941	incr pd4 diff	0.80788425	0.0642941	
incr pd5 diff	0.30395110	0.0638620	incr pd5 diff	0.30395110	0.0638620	
incr ad2 diff	0.27174584	0.0603230	incr ad2 diff	0.27174584	0.0603230	
incr ad3 diff	0.19483877	0.0615435	incr ad3 diff	0.19483877	0.0615435	
incr ad4 diff	0.88367616	0.0655376	incr ad4 diff	0.88367616	0.0655376	
incr_ad5_diff	0.52791784	0.0654440	incr ad5 diff	0.52791784	0.0654440	

Non-linear (constrained) models

- While the wording is somewhat different, the levels for the 5 EQ-5D dimensions correspond roughly to:
 - 1. No problems
 - 2. Slight problems
 - 3. Moderate problems
 - 4. Severe problems
 - 5. Extreme problems ("unable" for mobility, self-care, and usual activities)
- With the standard 20-parameter model, each decrement is considered in isolation.
- An alternative approach is to assume that the levels describe similar relative decrements across dimensions, and that the dimensions differ primarily in scale.
- The simplest such model requires only 8 parameter: one for each dimension, and one for each of levels 2, 3, and 4

www.euroqoi.org

The 20-parameter model

$tto = \alpha + \Sigma_l \Sigma_d \beta_{dl} x_{dl} + e$

 $= \alpha + \beta_{MO2} x_{MO2} + \beta_{SC2} x_{SC2} + \beta_{UA2} x_{UA2} + \beta_{PD2} x_{PD2} + \beta_{AD2} x_{AD2} + \beta_{A$

 $\beta_{MO3} x_{MO3} + \beta_{SC3} x_{SC3} + \beta_{UA3} x_{UA3} + \beta_{PD3} x_{PD3} + \beta_{AD3} x_{AD3} +$

 $\beta_{MO4}x_{MO4} + \beta_{SC4}x_{SC4} + \beta_{UA4}x_{UA4} + \beta_{PD4}x_{PD4} + \beta_{AD4}x_{AD4} +$

 $\beta_{MO5}x_{MO5} + \beta_{SC5}x_{SC5} + \beta_{UA5}x_{UA5} + \beta_{PD5}x_{PD5} + \beta_{AD5}x_{AD5} + e$

8-parameter model

• A single parameter per dimensjon (MO, SC, UA, PD, AD), and one for each of levels 2, 3, and 4 (L2, L3, L4):

 $tto = \alpha + \sum_{l} (\sum_{d} \beta_{d} x_{dl}) L_{l} + e$

 $=\alpha+(\beta_{MO}x_{MO2}+\beta_{SC}x_{SC2}+\beta_{UA}x_{UA2}+\beta_{PD}x_{PD2}+\beta_{AD}x_{AD2})L_2+$

 $(\beta_{MO}x_{MO3}+\beta_{SC}x_{SC3}+\beta_{UA}x_{UA3}+\beta_{PD}x_{PD3}+\beta_{AD}x_{AD3})L_3+$

 $(\beta_{MO}x_{MO4}+\beta_{SC}x_{SC4}+\beta_{UA}x_{UA4}+\beta_{PD}x_{PD4}+\beta_{AD}x_{AD4})L_4+$

 $\beta_{MO}x_{MO5} + \beta_{SC}x_{SC5} + \beta_{UA}x_{UA5} + \beta_{PD}x_{PD5} + \beta_{AD}x_{AD5} + e$

www.euroqof.org

Extensions

- The wording for level 5 on mobility, self-care and usual activities uses "unable to", while pain/discomfort and anxiety/depression uses "extreme".
- To handle this difference, a new parameter can be added for "unable to", for a total of 9 parameters
- Alternatively, the level structure can be estimated separately for the first three and the last two dimensions, for a total of 11 parameters
- These models are non-linear, and require specialized fitting functions. In STATA:

nl (value = {intercept} + /*

www.euroqof.org

Non-linear models cont'd

• The code on the last slide requires the dummies to be coded such that mobility level 4 yields

mo2 = 0, mo3 = 0, mo4 = 1, mo5 = 0

- For the DCE models, the coding is generally: mo2 = 1, mo3 = 1, mo4 = 1, mo5 = 0
- With this coding, the non-linear function previously presented will tend to become unstable and unreliable. It can be altered to accommodate this coding as follows:

nl (value = {intercept} + /*

```
*/ {MO = 0} * (_mo2 * {L2 = 0.25} + _mo3 * {L3 = 0.25} + _mo4 * {L4 = 0.25} + _mo5 * (1-L2-L3-L4)) + /*
```

```
*/ {SC = 0} * (_sc2 * L2 + _sc3 * L3 + _sc4 * L4 + _sc5 * (1-L2-L3-L4)) + /*
```


^{*/ {}UA = 0} * (_ua2 * L2 + _ua3 * L3 + _ua4 * L4 + _ua5 * (1-L2-L3-L4)) + /*

^{*/ {}PD = 0} * (_pd2 * L2 + _pd3 * L3 + _pd4 * L4 + _pd5 * (1-L2-L3-L4)) + /* */ {AD = 0} * (_ad2 * L2 + _ad3 * L3 + _ad4 * L4 + _ad5 * (1-L2-L3-L4)) /*

^{*/} if,iter(1000)

group 😸 etters 👹 kallen 🛞 ber han.

www.euroqof.org

Generalization of the non-linear models

- The *hyreg* command does not presently support non-linear models
- Built-in functions in STATA and R do not support non-linear interval regression
- A package allowing non-linear hybrid models (with and without intervals) has been developed for R, but is not documented to the point where it can be made publicly available.
- We have not found STATA functions that do not allow fitting of non-linear mixed effects models (i.e. random intercept/random slope models). This is possible using the *nlme* package in R.
- The upcoming hybrid function for R currently does not support mixed effects models.

A Reading	-	_	 -
100,000,000	1.000	10,7100	

Modelling TTO & DCE data using a hybrid model

Mark Oppe

oppe@euroqol.org

TTO and DCE methods

- Individuals have a utility function which determines their preferences over health states
- TTO & DCE methods both try to measure the same utility function
- TTO & DCE each have their own weaknesses
 - e.g. scale compatibility (BTD vs WTD) for C-TTO
 - e.g. no anchors for use in QALY calculations for DCE
- Which method should we choose?

www.euroqol.org

TTO, DCE or both?

- TTO: trade-off between quality of life and length of life
 How many years are you willing to give up to avoid being in
 - How many years are you willing to give up to avoid being in impaired health?
- DCE: trade-off between quality of life and quality of life
 Which health state is better?
- Both questions provide relevant information
- View TTO and DCE as complementary sources of information instead of competing
 - Include both types of information in a single model (Maximum Likelihood)

Log likelihood of basic hybrid model (OLS & clogit)

$$lnL = -\frac{1}{2} * \sum_{j \in C} \left\{ ln(2\pi\sigma^2) + \left(\frac{y_j - x\beta}{\sigma}\right)^2 \right\}$$
$$+ \sum_{j \in D} \left\{ ln \left(\frac{1}{1 + e^{(-x\beta')}}\right) * y_j + ln \left(\frac{e^{(-x\beta')}}{1 + e^{(-x\beta')}}\right) * (1 - y_j) \right\}$$

proportional rescaling parameter $\theta,$ such that β = β * θ

 10.000	roqe	a soe	5

Log likelihood of basic hybrid model (OLS & clogit)

$$lnL = -\frac{1}{2} * \sum_{j \in C} \left\{ ln \left(2\pi\sigma^2\right) + \left(\frac{y_j - x\beta}{\sigma}\right)^2 \right\}$$
$$+ \sum_{j \in D} \left\{ ln \left(\frac{1}{1 + e^{(-x\beta*\theta)}}\right) * y_j + ln \left(\frac{e^{(-x\beta*\theta)}}{1 + e^{(-x\beta*\theta)}}\right) * (1 - y_j) \right\}$$

TTO data structure

BLDCK_D	STATEJD	0.000.0	DM	30	10W	DD Cd	AD	ORIGNAL, REPORTE	Visitue	METHOD	TASK_TRAE_ung	TTD_noves	TO_relets	Profile	Severita
-1	0	1	0	0	0	0	0	10.5	0.05	πο	441.3	43	0	00000	0
-1	-1	2	2	1	1	2	1	14	0.4	πо	123.0	4	0	21121	7
-1	-2	3	3	5	5	5	4	10.5	0.05	TTO	222.4	6	0	35554	22
-1	-3	4	1	5	4	1	1	2	-0.8	πο	221.4	7	0	15411	12
2	10	5	1	2	1	2	1	18.5	0.85	тто	87.8	8	0	12121	7
2	12	6	3	4	1	5	5	10	0	тто	46.9	2	0	34155	18
7	83	7	1	1	2	1	1	20	1	TTO	56.1	9	0	11211	6
2	16	8	2	3	5	1	4	2	-0.8	πо	63.5	7	0	23514	15
2	15	9	3	2	4	4	з	2	-0.8	πо	58.3	7	0	32443	16
2	13	10	5	2	2	1	5	10	0	TTO	27.5	2	0	52215	15
2	9	11	1	2	5	4	3	2	-0.8	TTO	60.6	7	0	12543	15
2	11	12	4	3	5	4	2	1	-0.9	тто	42.3	8	0	43542	18
10	86	13	5	5	5	5	5	0	-1	тто	42.6	10	0	55555	25
2	14	14	4	5	1	3	3	14	0.4	πο	40.6	4	0	45133	16

www.euroqol.org

DCE data structure

STATE O	0.6065,00	NID!		1.4	20	0	C PERMAL REPORTS	Vahan		A 127400	TASH, TAF., HR	Profile	Severity
18	4	1	4	5	3	3	8	0	DCE	A	19.6	14533	16
18	4	2	1	5	4	2	A	1	DCE	В	19.6	21542	14
42	6	2	3	1	3	4	A	1	DCE	A	18.2	23134	13
42	6	1	4	3	1	4	в	0	DCE	B	18.2	14314	13
75	5	5	3	4	3	1	в	0	DCE	A	9.4	53431	16
75	5	5	2	2	5	5	A	1	DCE	В	9.4	52255	19
76	2	5	1	5	2	2	в	0	DCE	A	21.4	51522	15
76	2	4	5	2	4	4	A	1	DCE	В	21.4	45244	19
127	7	1	4	2	2	4	A	1	DCE	A	33.2	14224	13
127	7	3	2	3	2	2	8	0	DCE	В	33.2	32322	12
180	3	4	4	1	4	5	Α	1	DCE	A	7.2	44145	18
180	3	4	5	4	3	2	в	0	DCE	В	7.2	45432	18
196	1	1	1	2	2	1	A	1	DCE	A	52.1	11221	7
196	1	2	2	1	2	2	в	0	DCE	В	52.1	22122	9

Data structure for HYREG command in Stata

state/pair	method	datatype	EQ state	value	mo2	mo3	mo4	mo5	sc2	sc3	 ad5
1	TTO	1	22222	0.75	1	0	0	0	1	0	 0
20	DCE_A	0	53121	0	0	0	0	1	0	1	 0
20	DCE_B	0	32122	1	0	1	0	0	1	0	 0
21	DCE_A	0	12345	1	0	0	0	0	1	0	 1
21	DCE B	0	23435	0	1	0	0	0	0	1	 1

TTO & DCE: value* = 1- value

DCE: $mo2^* \dots ad5^* = mo2_A - mo2_B \dots ad5_A - ad5_B$ **TTO:** $mo2^* \dots ad5^* = mo2 \dots ad5$

1 TTO 1 22222 0.25 1 0 0 0 1 0	
	0
20 DCE_A-B 0 1 0 -1 0 1 0 -1	0
21 DCE_A-B 0 0 -1 0 0 0 1 -1	0

Hybrid OLS combined with Conditional logistic model

• Model assumptions

- Same as OLS for TTO and same as conditional logit for DCE

• Data structure

state/pair	method	datatype	EQ state	value*	mo2*	mo3*	mo4*	mo5*	sc2*	sc3*	 ad5*
1	TTO	1	22222	0.25	1	0	0	0	1	0	 0
20	DCE_A-B	0		1	0	-1	0	1	0	-1	 0
21	DCE_A-B	0		0	-1	0	0	0	1	-1	 0

Stata code

 hyreg value* mo2*-ad5*, datatype(datatype) contdist(normal) dichdist(logistic) noconstant

rw.eurogol.org

Hybrid censored at -1 combined with conditional logistic model

• Model assumptions

- Same as Tobit for TTO and same as conditional logit for DCE

• Data structure

state/pair	method	datatype	EQ state	value*	mo2*	mo3*	mo4*	mo5*	sc2*	sc3*	 ad5*
1	TTO	1	22222	0.25	1	0	0	0	1	0	 0
20	DCE_A-B	0		1	0	-1	0	1	0	-1	 0
21	DCE_A-B	0		0	-1	0	0	0	1	-1	 0

• Stata code

 hyreg value* mo2*-ad5*, datatype(datatype) contdist(normal) dichdist(logistic) noconstant ll(-1)

EQ-5D Apples, oranges or a fruit salad?

- TTO: trade-off between quality of life and length of life
- DCE: trade-off between quality of life and quality of life
- Hybrid:
 - Uses all available information
 - Estimates are between those of TTO and those of DCE
 - DCE can help mitigate issues present in TTO and v.v.
- Since the "true" utilities are not known, ultimately the choice is a normative one:
 - Which (imperfect) utility theory?
 - Which (imperfect) data collection technique?
- Pragmatic basis for choice: data quality; value range; performance in applications (e.g. discriminative power)

Modelling TTO & DCE data using a advanced hybrid models

Juan M. Ramos-Goñi jramos@euroqol.org

We have seen: Hybrid OLS combined with Conditional logistic model and sensoring at -1 for all responses Basic Model assumptions Same as OLS for C-TTO and same as conditional logit for DCE Homoscedastic variance Stata code:

hyreg value dummy_variables, datatype(method_dummy)

Tobit

Model assumptions

- Same as tobit for C-TTO and same as conditional logit for DCE

- Homoscedastic variance

• Stata code:

- hyreg value dummy_variables, datatype(method_dummy) ll(-1)

Does the homoscedasticity assumption fit in the case of EQ-VT data?

• As more severe is a state more discrepancy about its value

1	
1	FOFD
Ð	ECHOD
X.	
_	V

Hybrid models counting for heteroscedastic data

- In non heteroscedastic model, the variance is estimated as a single parameter. The idea behind heteroscedastic models is to model the variance as a function of the parameters which impacts on its value
- Model assumptions
 - Similar to OLS for C-TTO and similar to conditional logit for DCE
 - Heteroscedastic variance
- Stata code:

- hyreg value dummy_variables, datatype(method_dummy)
hetcont(dummy_variables') hetdich(dummy_variables'')

Hybrid intervals combined with Conditional logistic model

- Model assumptions
 - Similar to interval regression for C-TTO and similar to conditional logit for DCE
 - Heteroscedastic variance
- Stata code:
 - hyreg ll_value ul_value dummy_variables, datatype(method_dummy) intervals hetcont(dummy_variables') hetdich(dummy_variables'')

www.euroqoi.org

Using intervals for censoring specific C- TTO responses on a hybrid model

- Model assumptions
 - Similar to interval regression for C-TTO and similar to conditional logit for DCE
 - Heteroscedastic variance
- Stata code:

- hyreg Il_value ul_value dummy_variables, datatype(method_dummy) intervals hetcont(dummy_variables') hetdich(dummy_variables'')

Type of data		depvar1	depvar2
point data	a = [a,a]	а	а
interval data	[a,b]	а	b
left-censored data	(-inf,b]		b
right-censored data	[a,inf)	а	

Why we may be interested in censoring/truncating specific responses

- Lack of WTD explanation by the interviewer
- Specific interviewer/respondent behaviour during the interview leading to crude preferences rather than accurate stated preferences

state/pair	method	datatype	EQ state	value*	ll_value	ul_value	Dummies
1	TTO	1	22222	0		0	
2	TTO	1		-1		-1	
3	TTO	0		0.6	0.5	0.7	

www.euroqol.org

Hybrid models assuming different distributions for C-TTO or DCE data

- Assumptions
 - Similar to OLS for C-TTO and similar to conditional logit for DCE
 - Heteroscedastic variance
- Stata code:

 hyreg ll_value ul_value dummy_variables, datatype(method_dummy) intervals
 contdist(normal|logistic) dichcont(normal|logistic) hetcont(dummy_variables') hetdich(dummy_variables'')

Questions

Thanks for attending to this workshop