

Evolving Methods for Staging Patient Registries in Mature & Emerging Markets

ISPOR 7th Asia-Pacific Conference Singapore 4 September 2016

David Thompson Senior Vice President,

Real World Evidence Consulting, Late Stage, inVentiv Health

David.Thompson @inventivhealth.com

Jianwei Xuan Professor, Director of Health Economics Research Institute School of Pharmacy Sun Yat-Sen University jianweixuan1@optonline.net

Linda Liong Director, Project Management, Late Stage Operations, APAC, inVentiv Health Linda.Liong

@inventivhealth.com

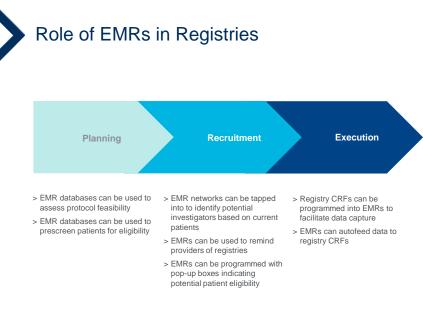
> 2 © 2016 All Rights Reserved | CONFIDENTIAL

- General objective is to compare and contrast traditional versus novel methods for the conduct of patient registries
- · Specific objectives include:
 - Describe how electronic medical records (EMRs) can impact study planning, patient identification & recruitment, and data capture
 - Provide a case study of a recent disease registry conducted in the AsiaPac region using traditional methods
 - Present a hospital-based EMR database in China and demonstrate how it could be used to facilitate conduct of observational studies

> 3 © 2016 All Rights Reserved | CONFIDENTIAL

Traditional paper-based approaches to patient identification & data collection

Newer electronic approaches to patient identification & data collection



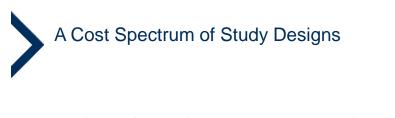
> 4 © 2016 All Rights Reserved | CONFIDENTIAL

EMRs & Registries: Square Peg in Round Hole?

Characteristic	EMRs	Registries
Data collected for	Individual patient health tracking & physician orders support	Population research
Patients included	All in practice	Selected based on protocol
Provider-induced variability in data collection	Lots	None
Practice-based customization of data collection	Yes	No
Data formats	Structured & unstructured	Structured & controlled vocabularies
Timing of data collection	Tied to patient encounters	Tied to protocol
Data quality assurance	Limited	Research specific validation rules
Data standards	HL7	CDISC

> 5 © 2016 All Rights Reserved | CONFIDENTIAL

> 6 © 2016 All Rights Reserved | CONFIDENTIAL


inVentiv

<section-header><text><text><text><text><text><image><image>

> 8 © 2016 All Rights Reserved | CONFIDENTIAL

\$250k	\$500K	\$750K	\$1million			\$10s of millions		
← Claims →	🗲 Tapping	EMR Networks						
← EMR →				÷	Prospectiv	ve Interventional	$\rightarrow \rightarrow$	
← EMR-Claim	s →		🗲 Prospe	ective Obs	ervational	→→		

- Studies involving different kinds of data sources naturally array across the cost spectrum according to time & effort in data collection
- Historically, much has been done on either end of the spectrum, but not much in the middle
- Novel approaches leveraging EMR databases for data analysis & patient outreach are providing design alternatives in mid-range of costs
- > 9 © 2016 All Rights Reserved | CONFIDENTIAL

Primary Objective

To measure the comparative efficacy of double and triple oral therapies:

- metformin + sulfonylurea,
- metformin + sulfonylurea + TZD (Thiazolidinediones) and
- metformin + sulfonylurea + DDP-IV (DiPeptidyl Peptidase 4) inhibitor,

on glycemic control from baseline over a 24-week treatment period in patients with type 2 diabetes mellitus using defined clinical laboratory measurements

> 11 © 2016 All Rights Reserved | CONFIDENTIAL

Inclusion criteria

- Patients with a history of clinical diagnosis of established type 2 diabetes mellitus defined by the ADA criteria 2012
- Patients with stable double oral therapy of metformin + sulfonylurea, triple oral therapy of metformin + sulfonylurea + TZD and triple oral therapy of metformin + sulfonylurea + DDP-IV inhibitor for at least 12 weeks at the screening visit

Exclusion criteria

- · Patients with type 1 diabetes mellitus or secondary forms of diabetes
- Patients who have been treated with insulin for ≥7 days within 3 months prior to the screening visit
- Patients with a history of acute diabetic complications such as diabetic ketoacidosis
- Patients taking concomitant gemfibrozil or other strong cytochrome P450 (CYP)2C8 inhibitors

Current Challenges & Novel Technology Solutions

Current Challenges	Novel Technology Solutions
Investigator selection based on clinical trials/research 	EMR databases can be used to assess protocol feasibility
experiencesInvestigator's interest in research participation	EMR databases can be used to prescreen patients for eligibility
 Patient recruitment - pre-screen patients for eligibility as quick assessment (accuracy?) 	 EMR networks can be tapped into to identify potential investigators based on current patients
 Patient selection in accordance to protocol full I/E criteria – limited number of eligible patients Patient pool saturation Screen failures For this registry, 2 protocol amendments to reduce sample size Enrollment rate calculations based on estimated number of available eligible 	 EMRs can be programmed with pop-up boxes indicating potential patient eligibility – speed up identification process After informed consent taken, eligible patient data is readily available
patients (& referrals) = Extended enrollment period (Still a great struggle)	
> 14 © 2016 All Rights Reserved CONFIDENTIAL	53 Health

Current Challenges & Novel Technology Solutions

Current Challenges	Novel Technology Solutions
 Site resources needed Screen and recruit patients, manage study activities Post study (patient) visits: Perform 	 Registry CRFs can be programmed into EMRs to facilitate data capture
 Data transcription from EMRs/paper medical records = data entries into eCRFs 	 EMRs can autofeed data to registry CRFs – No data entries required
 Data cleaning – query resolution Site staff- training and re-training on the use of EDC (slows down DE & DC) 	Minimal site resources needed
Due to other "priorities" from existing workload for clinical trials (higher	Minimal CRA resources needed
investigator fees & SC fees) – Limited site resources	Entire registry duration reduced
Limited number of on-site monitoring visits & remote monitoring by CRAs = reduced site interactive time to motivate site teams &	All adds up to significant cost savings
getting site resources	

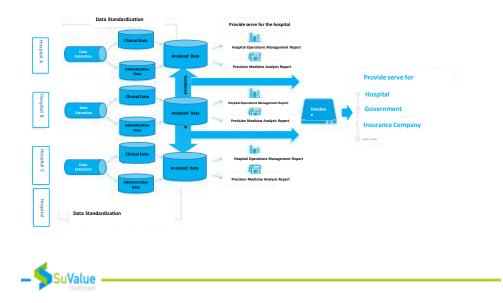
> 15 © 2016 All Rights Reserved | CONFIDENTIAL

Health

Medical Big Data Analysis to Support Real World Patient Registry Studies - China Example

SuValue EMR Database

----Medical Big Data In the Cloud


Brief Introduction of SuValue database

SuValue is a medical RWD database provider which obtains the *complete HIS/EMR data* from independent hospitals in various provinces/cities of China.

- ✓ Up to the July, 2016, completely cleaned and *structured data* from *15 hospitals* were included in the database.
- ✓ It is estimated that the database will cover 50 hospitals by *the end* of 2016 in various provinces/cities of China.
- ✓ It will reach the amount of *500* hospitals *within 3 years*.

Database Structure

Quality of SuValue database:

All the raw data collected from all hospitals have been cleaned and de-identified before transfer to research database (final database).

- ✓ All variables had been standardized as *structured data* follow by well-known *standard coding system(ICD-10, ATC code)*.
- ✓ Medical records from same patient have been integrated in order to provide longitudinal record.

Data Components:

- ✓ The database include the inpatient and outpatient data of different level hospital from the *Tier 2 hospital (80%)* to tertiary hospitals (20%).
- ✓ This database includes all EMR data elements form the *HIS, LIS and PACS*
 - - · Patients demographics, and insurance
 - Provider information
 Diagnostic (ICD-10), comorbidities, and treatment outcomes
 - ✓ Lab details,
 - ✓ Prescription information
 - ✓ Hospitalization information
 - $\checkmark\,$ All health care resource utilization and cost information.
 - ✓ Others

Typical research questions that can be addressed by the data source

Real World Patient Registry Studies – ideal situation

- ✓ Large Sample Size
- ✓ Fast Recruitment
- Ability to recruit patients who are more likely to react to particular treatments or potentially have less side effects
- ✓ Ability to generate real world effectiveness information

Real World Patient Registry Studies – Big Data Example

Study Objectives:

To measure the comparative efficacy of double and triple oral therapies:

- metformin + sulfonylurea,
- metformin + sulfonylurea + TZD (Thiazolidinediones) and
- metformin + sulfonylurea + DDP-IV (DiPeptidyl Peptidase 4) inhibitor,

on glycemic control from baseline over a 24-week treatment period in patients with type 2 diabetes mellitus using defined clinical laboratory measurements

Real World Patient Registry Studies – Big Data Example

Inclusion criteria

- Patients with a history of clinical diagnosis of established type 2 diabetes mellitus defined by the ADA criteria 2012
- Patients with stable double oral therapy of metformin + sulfonylurea, triple oral therapy of metformin + sulfonylurea + TZD and triple oral therapy of metformin + sulfonylurea + DDP-IV inhibitor for at least 12 weeks at the screening visit

Exclusion criteria

- Patients with type 1 diabetes mellitus or secondary forms of diabetes
- Patients who have been treated with insulin for ≥7 days within 3 months prior to the screening visit
- Patients with a history of acute diabetic complications such as diabetic ketoacidosis
- Patients taking concomitant gemfibrozil or other strong cytochrome P450 (CYP)2C8 inhibitors

Real World Patient Registry Studies – Big Data Example :

Type of Encounter	Diabetic Patients	Hypertension	Hyperlipidemia
Ambulatory	188,269	325,652	12,995
Hospitalizations	5,001	9,742	336

Real World Patient Registry Studies – Big Data Example

Big Data Analysis to Support Real World Patient Registry Study:

- 1. Ability to identify patients by applying the inclusion and exclusion criterial in the Suvalue database to identify right patients
- 2. Ability to assess the feasibility of the study
- 3. Potentially can trace these patients to the site and work with site investigators to recruit patients under considerations
- 4. Running risk factor analysis to identify which inclusion and exclusion criterial could potentially have more impact on the recruitment of the patients.
- 5. Identify subgroup patients who are more likely to react particular treatments
- 6. Identify subgroup patients who are more likely have less ADRs

End Results: Improve Efficiency and Effectiveness to Run the Study

Thanks!

