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Health care utilization trajectories
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Can we use clustering to discover and illustrate
variation in experiences?
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Source: Schuler et al (2017) Health Affairs. doi: 10.1377/hlthaff.2017.0448



Feature extraction + LCA

Health care trajectories

Trajectory summary measures Other characteristics
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Latent class analysis Latent class regression
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Latent class analysis

For response pattern y and class c;,
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The class indicators are missing data.



Four distinct classes
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Source: Schuler et al (2017) Health Affairs. doi: 10.1377/hlthaff.2017.0448

Classes have distinct trajectories

SO OOmIa (06| HOApKe COTIIaNd (178

— A ——frad s - = .

Azute-Sormrwted [ 17%) ICU dormmates (1%

% of posogle In doss

1w o s
% of sme from diagnosss to death

Source: Schuler et al (2017) Health Affairs. doi: 10.1377/hlthaff.2017.0448

e —————————— ¢ e — ~ e ———iey {008



Remaining methods gaps

Limitations of feature extraction + LCA A new distance measure

Discards ordering Uses sequence
information information directly

Requires good feature Does not require feature

selection selection by investigator

Sensitive to choice of Facilitates standard
features clustering methods

Distance is a weighted combination of

1. moving average of discordant days and
2. length difference
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Bandwidth and weight tuning
parameters
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Conclusions

¢ Clustering can show variation in longitudinal data
* Feature extraction enables use of LCA clustering
* Custom distance measure enables other clustering methods
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