Interpreting dominance tests in DCEs

Prepared by: Kevin Marsh, PhD

Acknowledgements

- Tommi Tervonen, Evidera
- Tabea Schmidt-Ott, Universität Oldenburg
- John F. P. Bridges, Ohio State
- Matthew Quaife, LSHTM
- Ellen Janssen, ICON

OEvidera **PPD**

Background and objectives

- How should dominance tests (DT) be used for supporting choice validity assessment in DCEs?
- Previous reviews: Frequency of the use of DT
- Our contribution:
 - How have authors used DT?
 - Implications of the Random Utility Model (RUM) for interpreting DT

OEvidera **PPD**

How are we currently using of DTs?

Data: DCE in health published in 2015 identified by Vass et al (2017)

 \rightarrow 28 of 112 Studies included a dominance test (25%)

4

3

Vass, C., Rigby, D., & Payne, K. (2017). The Role of Qualitative Research Methods in Discrete Choice Experiments. Medical Decision Making, 37(3), 298–313. https://doi.org/10.1177/0272989X16683934

How are we currently using of DTs?

Data: DCE in health published in 2015 identified by Vass et al (2017)

 \rightarrow 28 of 112 Studies included a dominance test (25%)

Vass, C., Rigby, D., & Payne, K. (2017). The Role of Qualitative Research Methods in Discrete Choice Experiments. Medical Decision Making, 37(3), 298–313. https://doi.org/10.1177/0272989X16683934

OEvidera **PPD**

How are we currently using of DTs?

Data: DCE in health published in 2015 identified by Vass et al (2017)

 \rightarrow 28 of 112 Studies included a dominance test (25%)

Vass, C., Rigby, D., & Payne, K. (2017). The Role of Qualitative Research Methods in Discrete Choice Experiments. Medical Decision Making, 37(3), 298–313. https://doi.org/10.1177/0272989X16683934

OEvidera PPD

Theory			Failure of DT
Expected utility theory	Axioms of coherent choice underlying of utility theory - completeness, transitivity, and independence		Violate axioms e.g.InattentionSimplifying heuristics e.g. straight-lining.
Random utility theoryProbabilistic choicesUniversity varUtility observed with a degree of errorMe errorMathematical degree of errorMe error	Unobserved variables attributes	 Attributes that affect preferences may not be known / controlled for Infer information beyond that presented in the DCE (e.g. high cost implies higher quality) 	
		Measurement error – rational, understand, attend, but still make a mistake	 Ambiguities in attribute definitions Complexity of choice questions. Design of the DT Number of choice questions. Fatigue

Does 'failure' of DT violate the theory underlying the DCE?

7

8

OEvidera **PPD**

Poorly designed DT: Illustration

	Treatment A	Treatment B
Cost	\$100	\$200
Location	Home	GP
CV risk	2%	3%
Choice		
	Dominant choice?	

The probability that the dominated alternative is chosen (p_e)

Inputs

- 1. Model extracted from the paper.
- 2. Attribute levels used in the DT: 14 of 28 (50%) authors provided on request.

 $U_i = V(\beta, X_i) + \varepsilon_i.$

$$P_e = \frac{\exp(V(\beta, X_{\text{dominated}}))}{\exp(V(\beta, X_{\text{dominated}})) + \exp(V(\beta, X_{\text{dominant}}))}$$

Should we exclude 'fails' if $p_o > p_e$? 1. Low p_e

OEvidera PPD

Should we exclude 'fails' if $p_o > p_e$? 1. Low p_e

Should we exclude 'fails' if $p_o > p_e$? 1. Low p_e

Should we exclude 'fails' if $p_o > p_e$? 2. High p_e

SUMMARY

- 'Failure' of a DT not necessarily an indication of a lack of attention or irrationality.
 RUT we'd expect some participants to 'fail' the DT
 - Test with very high p_e provides little information.
 - Test with very low p_e suggest the DCE has been designed and answered well

 Average 'failure' rate (6%) would require a very low p_e before we'd conclude this was a problem
- Poorly designed DCE's / DT may contribute to high 'failure' rates e.g.
 - Small / uncertain part-worths point to problems with the overall design
 - Attributes with ambiguous preference orders avoid cost, mode of admin
 - Conclusion: problem with the study, rather than the respondents' attention / rationality!
 - Qualitative research and pilot tests can help identify
 - $\circ\,$ Ambiguities in preference ordering.
 - $\circ\,$ Levels that can (i) differentiate, and (ii) will trade.
- Other data can help inform the interpretation of DT
 - Time to complete choice tasks
 - Straight-lining

20